Implementing a memristive Van der Pol oscillator coupled to a linear oscillator: synchronization and application to secure communication

This paper investigates the dynamics of a memristor-based Van der Pol oscillator coupled to a linear circuit (VDPCL). This chaotic oscillator is a modification of the classical Van der Pol coupled to a linear circuit, and is obtained by replacing the classical cubic nonlinearity by the memristive one. The memristive VDPCL oscillator, in addition to having a very special stability property, exhibits interesting spectral characteristics, which makes it suitable for chaos-based secure communication applications. The memristor is realized by using off-the-shelf components. The basic properties of the circuit are analyzed by means of bifurcation analysis. Chaotic attractors from numerical and experimental analysis are presented, followed by a comparison of results obtained from the modified VDPCL oscillator and those from the classical VDPCL oscillator. An application to synchronization and chaos secure communication is also presented.

[1]  Michael Peter Kennedy,et al.  Three steps to chaos. II. A Chua's circuit primer , 1993 .

[2]  P. Shi,et al.  Adaptive observer-based control for a class of chaotic systems , 2004 .

[3]  Sara Dadras,et al.  Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos , 2010 .

[4]  Luigi Glielmo,et al.  Switchings, bifurcations, and chaos in DC/DC converters , 1998 .

[5]  Shuzhi Sam Ge,et al.  Synchronization of Two uncertain Chaotic Systems via Adaptive backstepping , 2001, Int. J. Bifurc. Chaos.

[6]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[7]  Ricardo Femat,et al.  Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization , 2000 .

[8]  Gonzalo Álvarez,et al.  Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems , 2003, Int. J. Bifurc. Chaos.

[9]  Guanrong Chen,et al.  Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.

[10]  Hilaire Bertrand Fotsin,et al.  An Adaptive Observer for Chaos Synchronization of a Nonlinear Electronic Circuit , 2006, Int. J. Bifurc. Chaos.

[11]  Ulrich Parlitz,et al.  Stabilizing unstable steady states using multiple delay feedback control. , 2004, Physical review letters.

[12]  A. Tamasevicius,et al.  Hyperchaos in coupled Colpitts oscillators , 2003 .

[13]  P. Woafo,et al.  Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .

[14]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[15]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[16]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[17]  Samuel Bowong,et al.  Unknown inputs' adaptive observer for a class of chaotic systems with uncertainties , 2008, Math. Comput. Model..

[18]  L. Chua Memristor-The missing circuit element , 1971 .

[19]  M. Wiercigroch,et al.  Frictional chatter in orthogonal metal cutting , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Chi-Chuan Hwang,et al.  A new feedback control of a modified Chua's circuit system , 1996 .

[21]  G. Fève,et al.  A coherent RC circuit , 2012, Reports on progress in physics. Physical Society.

[22]  Ricardo Femat,et al.  A strategy to control chaos in nonlinear driven oscillators with least prior knowledge , 1997 .

[23]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[24]  Samuel Bowong,et al.  Synchronization of uncertain chaotic systems via backstepping approach , 2004 .

[25]  L. Chua,et al.  A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .

[26]  Gamal M. Mahmoud,et al.  Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system , 2007 .

[27]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[28]  Zhi-Hong Guan,et al.  Feedback and adaptive control for the synchronization of Chen system via a single variable , 2003 .

[29]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[30]  R. Femat,et al.  Synchronization of chaotic systems with different order. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  M. Bernardo A purely adaptive controller to synchronize and control chaotic systems , 1996 .

[32]  Samuel Bowong,et al.  Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators , 2006 .

[33]  Design of a Nonlinear Observer for a Chaotic System Consisting of Van der Pol Oscillator Coupled to a Linear Oscillator , 2005 .

[34]  Boris R. Andrievsky Adaptive synchronization methods for signal transmission on chaotic carriers , 2002, Math. Comput. Simul..

[35]  Moez Feki,et al.  Observer-based chaotic synchronization in the presence of unknown inputs , 2003 .

[36]  Ricardo Femat,et al.  Synchronization of a class of strictly different chaotic oscillators , 1997 .

[37]  Ricardo Femat,et al.  A note on robust stability analysis of chaos synchronization , 2001 .

[38]  Guo-Ping Jiang,et al.  Stabilizing unstable equilibria of chaotic systems from a State observer approach , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[39]  S. Bowong Stability analysis for the synchronization of chaotic systems with different order: application to secure communications , 2004 .

[40]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[41]  Jamal Daafouz,et al.  Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators , 2005 .

[42]  M. T. Yassen,et al.  Adaptive control and synchronization of a modified Chua's circuit system , 2003, Appl. Math. Comput..

[43]  Gualberto Solís-Perales,et al.  A chaos-based communication scheme via robust asymptotic feedback , 2001 .

[44]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[45]  Paul Woafo,et al.  Synchronization: stability and duration time. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Kyandoghere Kyamakya,et al.  Behavior of a Self-Sustained Electromechanical Transducer and Routes to Chaos , 2006 .

[47]  R. Rajamani,et al.  A systematic approach to adaptive observer synthesis for nonlinear systems , 1997, IEEE Trans. Autom. Control..

[48]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.