Entropy Production during Asymptotically Safe Inflation

The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing its implications for cosmology using renormalization group improved Einstein equations, we find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological constant and ends automatically when the renormalization group evolution has reduced the vacuum energy to the level of the matter energy density. The quantum gravity effects also provide a natural mechanism for the generation of entropy. It could easily account for the entire entropy of the present Universe in the massless sector.

[1]  C. Wetterich,et al.  Average action for the Higgs model with abelian gauge symmetry , 1993 .

[2]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[3]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[4]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[5]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[6]  A. Bonanno,et al.  Primordial entropy production and Λ-driven inflation from Quantum Einstein Gravity , 2008, 0803.2546.

[7]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[8]  Dimensionally reduced gravity theories are asymptotically safe , 2003, hep-th/0304117.

[9]  J. Lima Cosmologies with Photon Creation and the 3K Relic Radiation Spectrum , 1996, gr-qc/9605056.

[10]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[11]  S. Weinberg Asymptotically Safe Inflation , 2009, 0911.3165.

[12]  Frank Saueressig,et al.  Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.

[13]  M.Reuter,et al.  Proper Time Flow Equation for Gravity , 2004 .

[14]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[15]  C. Wetterich,et al.  Running gauge coupling in three dimensions and the electroweak phase transition , 1993 .

[16]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[17]  C. Wetterich,et al.  Exact evolution equation for scalar electrodynamics , 1994 .

[18]  A. Bonanno,et al.  Cosmological Perturbations in Renormalization Group Derived Cosmologies , 2004 .

[19]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[20]  Alfio Bonanno,et al.  Quantum gravity effects near the null black hole singularity , 1999 .

[21]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[22]  S. Weinberg Effective Field Theory, Past and Future , 2009, 0908.1964.

[23]  M. Reuter,et al.  From big bang to asymptotic de Sitter: complete cosmologies in a quantum gravity framework , 2005, hep-th/0507167.

[24]  C. Wetterich Effective average action in statistical physics and quantum field theory , 2001 .

[25]  Alfio Bonanno,et al.  Entropy signature of the running cosmological constant , 2007, 0706.0174.

[26]  Daniel F Litim Fixed points of quantum gravity. , 2004, Physical review letters.

[27]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[28]  Thermodynamics of decaying vacuum cosmologies. , 1996, Physical review. D, Particles and fields.

[29]  Viale Andrea Doria,et al.  Renormalization group improved black hole spacetimes , 2000 .

[30]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[31]  Holger Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006 .

[32]  M. Reuter,et al.  Quantum Gravity Effects in Rotating Black Holes , 2006, hep-th/0612037.

[33]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[34]  Reuter Effective average action of Chern-Simons field theory. , 1996, Physical review. D, Particles and fields.

[35]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[36]  Renormalization and asymptotic safety in truncated quantum Einstein gravity , 2002, hep-th/0207143.

[37]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[38]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[39]  M. Reuter,et al.  Renormalization group improved gravitational actions: A Brans-Dicke approach , 2004 .

[40]  F. Saueressig,et al.  A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior , 2002 .

[41]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[42]  M. Reuter Renormalization of the topological charge in Yang-Mills theory , 1996 .

[43]  Steven Weinberg,et al.  What is Quantum Field Theory, and What Did We Think It Is? , 1996, hep-th/9702027.

[44]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[45]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[46]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[47]  M. Reuter,et al.  Running Newton constant, improved gravitational actions, and galaxy rotation curves , 2004 .