Structural consequences of the one-electron reduction of d4 [Mo(CO)2(eta-PhC[triple bond]CPh)Tp']+ and the electronic structure of the d5 radicals [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {L = CO and P(OCH2)3CEt}.

Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.

[1]  Piotr Pietrzyk,et al.  Application of Genetic Algorithm for Extraction of the Parameters from Powder EPR Spectra , 2005 .

[2]  Tomasz Spalek,et al.  Application of the Genetic Algorithm Joint with the Powell Method to Nonlinear Least-Squares Fitting of Powder EPR Spectra , 2005, J. Chem. Inf. Model..

[3]  A. Orpen,et al.  Redox routes to arenechromium complexes of two-, three- and four-electron alkynes; structure and bonding in paramagnetic [Cr(CO)L(η-RCCR)(η-arene)]+ , 2002 .

[4]  A. Orpen,et al.  Ligand-Induced and Reductively Induced Alkyne−Isocyanide Coupling Reactions of [Mo(CNBut)3(PhC⋮CPh)(η5-C5Me5)][BF4] , 2002 .

[5]  G. Frenking,et al.  Nature of the Metal−Ligand Bond in M(CO)5PX3 Complexes (M = Cr, Mo, W; X = H, Me, F, Cl): Synthesis, Molecular Structure, and Quantum-Chemical Calculations , 2002 .

[6]  A. Orpen,et al.  The d2/d3 alkyne redox pair [WF2(PhCCPh)Tp′]z (z = +1 or 0): missing links in a ‘redox family tree’ , 2002 .

[7]  C. Adams,et al.  EPR and NMR spectroscopic studies of [MoL2(MeCCMe)Cp]z (L = P-donor ligand, z = 0 and 1): fluxionality in a metal–alkyne redox pair , 2001 .

[8]  R. Winter,et al.  Reduction of [ML(alkyne)2(η-C5R‘5)]+ (M = Mo or W, L = MeCN or CO, R‘ = H or Me, C5R‘5 = C5HPh4): Characterization of Radical Intermediates in the Reductive Coupling of Coordinated Alkynes , 1999 .

[9]  A. Orpen,et al.  Structure and bonding in the d4/d3 alkyne redox pairs [WX(CO)(MeCCMe)Tp′]z (X = F, Cl, Br and I; z = 0 and 1): halide stabilisation of electron deficient metal alkyne complexes , 1999 .

[10]  A. Orpen,et al.  Oxidatively induced isomerisation of vinylidene ligands to alkynes: ESR spectra of paramagnetic vinylidene and alkyne arene metal complexes , 1999 .

[11]  P. Rieger Atomic Hyperfine-Coupling Parameters for the Transition Metals , 1997 .

[12]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[13]  A. Orpen,et al.  Synthesis, Reactions, and Molecular and Electronic Structure of the Radical Cation [Mo2(μ-C8Me8)(η-C5H5)2]+: An Intermediate in the Redox Activation of an Alkyl C−H Bond , 1996 .

[14]  A. Orpen,et al.  Structure and bonding in redox-active d 4 , d 5 , and d 6 alkyne complexes: metal-alkyne moieties as electron sinks , 1996 .

[15]  Bernhard Metz,et al.  Electron-Transfer-Induced Interconversion of Alkyne and Vinylidene Chromium Complexes: A Quantitative Study , 1995 .

[16]  P. Rieger Electron paramagnetic resonance studies of low-spin d5 transition metal complexes , 1994 .

[17]  P. White,et al.  Geometric features of d4 metal dicarbonyl monomers with cis-π-donor ligands , 1994 .

[18]  J. L. Templeton,et al.  (η2-vinyl)- and (η3-allyl)tungsten(II) complexes containing a hydridotris(3,5-dimethylpyrazolyl)borate ligand , 1992 .

[19]  P. White,et al.  Synthesis and characterization of chiral (hydridotris(3,5-dimethylpyrazolyl)borato)tungsten(II) alkyne complexes , 1991 .

[20]  J. L. Templeton Four-electron alkyne ligands in molybdenum(II) and tungsten(II) complexes , 1989 .

[21]  K. Shiu,et al.  Organotransition-metal complexes of multidentate ligands , 1988 .

[22]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[23]  U. Kölle,et al.  Permethylmetallocene, II. Decamethylcobaltocen: Synthese und Umwandlung in methylierte (Aren)(cyclopentadienyl)cobalt-Kationen , 1981 .

[24]  K. Muir,et al.  Reactions of co-ordinated ligands. Part 24. The reaction of bis-(but-2-yne)carbonyl(η-cyclopentadienyl or η5-indenyl)molybdenum tetrafluoroborate with acetonitrile and phosphines; crystal structures of but-2-ynecarbonyl(η5-indenyl)(triethylphosphine)molybdenum tetrafluoroborate and but-2-yne(η5-inde , 1981 .

[25]  J. L. Templeton,et al.  Carbon-13 chemical shifts of alkyne ligands as variable electron donors in monomeric molybdenum and tungsten complexes , 1980 .

[26]  J. Morton,et al.  Atomic parameters for paramagnetic resonance data , 1978 .