2. I.Y. Oh, K.H. Ra, and C.S. Park, Dynamic linearisation overcomingsweet spot of Doherty amplifier for WiBRO handset, IET Micro-waves Antennas Propag 2 (2008), 904–912.3. S.W. Ko and J.S. Lin, A linearized cascode CMOS power amplifier,In: IEEE Wireless and Microwave Technology Conference (WAMI-CON) 2006, Florida, USA, 2006, pp. 1–4.4. T.W. Kim and B.K. Kim, A 13dB IIP3 improved low-power CMOSRF programmable gain amplifier using differential circuit transcon-ductance linearization for various terrestrial mobile D-TV applica-tions, IEEE J Solid-State Circuits 41 (2006), pp. 945–953.5. R. Mallesh, U. Parag, and D.K. Heo, Enhanced Gm3 cancellation forlinearity improvement in CMOS LNAs, In: IEEE International Sym-posium on Circuits and Systems (ISCAS) 2006, 2006, pp. 4240–4243.6. J.H. Kim, C.S. Cho, J.W. Lee, and J. Kim, Linearity improvementof class-E Doherty amplifier using gm3 cancellation, IET ElectronLett 44 (2008), 359–369.7. C. Lu, A.H. Pham, M. Shaw, and C. Saint, Linearization of CMOSbroadband power amplifiers through combined multigated transistorsand capacitance compensation, IEEE Trans Microwave Theory Tech55 (2007), 2320–2328.8. J.H. Kim, K.Y. Kim, and C.S. Park, Linearity improvement of apower amplifier with a series LC resonant circuit, IEEE MicrowaveWireless Compon Lett 18 (2008), 332–334.9. P. Reynaert and Michiel S. J. Steyaert, A 2.45-GHz 0.13-lm CMOSPA with parallel amplification, IEEE J Solid-State Circuits 42(2007), 551–562.10. H.S. Oh, C.S. Kim, H.K. Yu, and C.K. Kim, A Fully-integratedþ23-dBm CMOS triple cascode linear power amplifier with inner-parallel power control scheme, In: IEEE Radio Frequency IntegratedCircuits (RFIC) Symposium, San Francisco, 2006, pp. 165–168.11. Y. Luque, E. Kerherve, N. Deltimple, and D. Belot, CMOS PAdesign dedicated to UMTS(3G) applications in 65 nm technology,4
[1]
Junho Yeo,et al.
Compact Spatial Triple-Band-Stop Filter for Cellular/PCS/IMT-2000 Systems
,
2008
.
[2]
Rosmond Garcia.
Contribution à l'étude de circuits planaires par une méthode itérative basée sur le concept d'onde (F. W. C. I. P)
,
2001
.
[3]
Antonio Luiz P. S. Campos,et al.
A simple dual‐band frequency selective surface
,
2009
.
[4]
John L. Volakis,et al.
Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays
,
2002
.
[5]
A. G. Neto,et al.
Determination of metallic ring FSS scattering characteristics using WCIP method
,
2008
.
[6]
G. Gerini,et al.
Multimode Equivalent Networks for the Design and Analysis of Frequency Selective Surfaces
,
2007,
IEEE Transactions on Antennas and Propagation.
[7]
B. Monacelli,et al.
Infrared frequency selective surface based on circuit-analog square loop design
,
2005,
IEEE Transactions on Antennas and Propagation.
[8]
R.A. Gilbert,et al.
A reconfigurable slot aperture design over a broad-band substrate/feed structure
,
2004,
IEEE Transactions on Antennas and Propagation.
[9]
Anyong Qing,et al.
Vector Spectral-Domain Method for the Analysis of Frequency Selective Surfaces
,
2005
.
[10]
H. Baudrand,et al.
Near fields evaluated with the wave concept iterative procedure method for an E-polarisation plane wave scattered by cylindrical strips
,
2003
.