On local estimating equations in additive multiparameter models

Estimating all parameters in a multiparameter response model as smooth functions of an explanatory variable is very similar to estimating the different components of an additive model for the response mean. It is shown that, in a general estimating framework, local polynomial backfitting estimators in an additive one-parameter model do not work optimally. For a multiparameter model, however, a backfitting algorithm can be defined that leads to local polynomial estimators that do have optimal properties.

[1]  Oliver Linton,et al.  EFFICIENT ESTIMATION OF GENERALIZED ADDITIVE NONPARAMETRIC REGRESSION MODELS , 2000, Econometric Theory.

[2]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[3]  Ke-Hai Yuan,et al.  Asymptotics of Estimating Equations under Natural Conditions , 1998 .

[4]  Anthony C. Davison,et al.  Local likelihood smoothing of sample extremes , 2000 .

[5]  O. Linton,et al.  A kernel method of estimating structured nonparametric regression based on marginal integration , 1995 .

[6]  David Ruppert,et al.  Local Estimating Equations , 1998 .

[7]  David Ruppert,et al.  Fitting a Bivariate Additive Model by Local Polynomial Regression , 1997 .

[8]  G. Molenberghs,et al.  An exponential family model for clustered multivariate binary data , 1999 .

[9]  G. Claeskens,et al.  Local polynomial estimation in multiparameter likelihood models , 1997 .

[10]  Wolfgang Härdle,et al.  Direct estimation of low-dimensional components in additive models , 1998 .

[11]  Byron J. T. Morgan Analysis of Quantal Response Data , 1992 .

[12]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[13]  Oliver Linton,et al.  Miscellanea Efficient estimation of additive nonparametric regression models , 1997 .

[14]  G. Molenberghs,et al.  Pseudolikelihood Modeling of Multivariate Outcomes in Developmental Toxicology , 1999 .

[15]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[16]  L. Zhao,et al.  Correlated binary regression using a quadratic exponential model , 1990 .