Linear Monotone Subspaces of Locally Convex Spaces

The main focus of this paper is to study multi-valued linear monotone operators in the context of locally convex spaces via the use of their Fitzpatrick and Penot functions. Notions such as maximal monotonicity, uniqueness, negative-infimum, and (dual-)representability are studied and criteria are provided.

[1]  F. Browder The fixed point theory of multi-valued mappings in topological vector spaces , 1968 .

[2]  R. Rockafellar Local boundedness of nonlinear, monotone operators. , 1969 .

[3]  Jean-Pierre Gossez,et al.  On the range of a coercive maximal monotone operator in a nonreflexive Banach space , 1972 .

[4]  Extremal problems for certain classes of analytic functions , 1972 .

[5]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[6]  J. Gossez On the extensions to the bidual of a maximal monotone operator , 1977 .

[7]  S. Fitzpatrick Representing monotone operators by convex functions , 1988 .

[8]  R. R. Phelps,et al.  Some properties of maximal monotone operators on nonreflexive Banach spaces , 1995 .

[9]  Stephen Simons,et al.  The range of a monotone operator , 1996 .

[10]  S. Simons Minimax and monotonicity , 1998 .

[11]  R. R. Phelps,et al.  Unbounded linear monotone operators on nonreflexive Banach spaces. , 1998 .

[12]  Heinz H. Bauschke,et al.  Stronger maximal monotonicity properties of linear operators , 1999, Bulletin of the Australian Mathematical Society.

[13]  Heinz H. Bauschke,et al.  Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators , 1999 .

[14]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[15]  Regina Sandra Burachik,et al.  MAXIMAL MONOTONICITY, CONJUGATION AND THE DUALITY PRODUCT , 2003, 0802.1654.

[16]  Jean-Paul Penot,et al.  The relevance of convex analysis for the study of monotonicity , 2004 .

[17]  C. Zalinescu,et al.  A new proof for Rockafellar’s characterization of maximal monotone operators , 2004 .

[18]  B. Svaiter,et al.  Monotone Operators Representable by l.s.c. Convex Functions , 2005 .

[19]  C. Zalinescu,et al.  Some problems about the representation of monotone operators by convex functions , 2005 .

[20]  M. D. Voisei The Sum Theorem for Linear Maximal Monotone Operators , 2006 .

[21]  J. Borwein Maximal Monotonicity via Convex Analysis , 2006 .

[22]  Stephen Simons,et al.  Dualized and scaled Fitzpatrick functions , 2006 .

[23]  M. D. Voisei The Sum and Chain Rules for Maximal Monotone Operators , 2006 .

[24]  Jonathan M. Borwein,et al.  Maximality of sums of two maximal monotone operators in general Banach space , 2007 .

[25]  B. Svaiter,et al.  Bronsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces , 2008, 0802.1895.

[26]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[27]  Jean-Paul Penot,et al.  Natural closures, natural compositions and natural sums of monotone operators , 2008 .

[28]  Heinz H. Bauschke,et al.  Monotone Linear Relations: Maximality and Fitzpatrick Functions , 2008, 0805.4256.

[29]  M. D. Voisei,et al.  Maximal monotonicity criteria for the composition and the sum under weak interiority conditions , 2010, Math. Program..