Biomimicry of Crowd Evacuation with a Slime Mould Cellular Automaton Model

Evacuation is an imminent movement of people away from sources of danger. Evacuation in highly structured environments, e.g. building, requires advance planning and large-scale control. Finding a shortest path towards exit is a key for the prompt successful evacuation. Slime mould Physarum polycephalum is proven to be an efficient path solver: the living slime mould calculates optimal paths towards sources of attractants yet maximizes distances from repellents. The search strategy implemented by the slime mould is straightforward yet efficient. The slime mould develops may active traveling zones, or pseudopodia, which propagates along different, alternative, routes the pseudopodia close to the target loci became dominating and the pseudopodia propagating along less optimal routes decease. We adopt the slime mould’s strategy in a Cellular-Automaton (CA) model of a crowd evacuation. CA are massive-parallel computation tool capable for mimicking the Physarum’s behaviour. The model accounts for Physarum foraging process, the food diffusion, the organism’s growth, the creation of tubes for each organism, the selection of optimum path for each human and imitation movement of all humans at each time step towards near exit. To test the efficiency and robustness of the proposed CA model, several simulation scenarios were proposed proving that the model succeeds to reproduce sufficiently the Physarum’s inspiring behaviour.

[1]  Georgios Ch. Sirakoulis,et al.  A TCAD system for VLSI implementation of the CVD process using VHDL , 2004, Integr..

[2]  Andrew Adamatzky,et al.  Slime Mold Solves Maze in One Pass, Assisted by Gradient of Chemo-Attractants , 2011, IEEE Transactions on NanoBioscience.

[3]  José Rogan,et al.  Cellular automaton model for evacuation process with obstacles , 2007 .

[4]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[5]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[6]  T. Niizato,et al.  Minimal model of a cell connecting amoebic motion and adaptive transport networks. , 2008, Journal of theoretical biology.

[7]  Rolf Hoffmann,et al.  A scalable configurable architecture for the massively parallel GCA model , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[8]  S. Stephenson,et al.  Myxomycetes: A Handbook of Slime Molds , 1994 .

[9]  Jeff Jones Approximating the Behaviours of Physarum polycephalum for the Construction and Minimisation of Synthetic Transport Networks , 2009, UC.

[10]  Rocco Rongo,et al.  A parallel cellular tool for interactive modeling and simulation , 1996 .

[11]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[12]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[13]  Tony White,et al.  Agent-Based Modelling of Forces in Crowds , 2004, MABS.

[14]  Muaz A. Niazi,et al.  Complex Adaptive Systems Modeling: A multidisciplinary Roadmap , 2013, Complex Adapt. Syst. Model..

[15]  Zili Zhang,et al.  A Physarum Network Evolution Model Based on IBTM , 2013, ICSI.

[16]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems , 1999, Encyclopedia of Complexity and Systems Science.

[17]  T. Ueda,et al.  Interaction between cell shape and contraction pattern in the Physarum plasmodium. , 2000, Biophysical chemistry.

[18]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2007, Graph. Model..

[19]  Masashi Aono,et al.  Robust and emergent Physarum logical-computing. , 2004, Bio Systems.

[20]  Andrew Adamatzky,et al.  Route 20, Autobahn 7, and Slime Mold: Approximating the Longest Roads in USA and Germany With Slime Mold on 3-D Terrains , 2012, IEEE Transactions on Cybernetics.

[21]  L. F. Henderson,et al.  The Statistics of Crowd Fluids , 1971, Nature.

[22]  Tommaso Toffoli,et al.  CAM: A high-performance cellular-automaton machine , 1984 .

[23]  Sébastien Paris,et al.  Activity-Driven Populace: A Cognitive Approach to Crowd Simulation , 2009, IEEE Computer Graphics and Applications.

[24]  Georgios Ch. Sirakoulis,et al.  A CAD System for Modeling and Simulation of Computer Networks Using Cellular Automata , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[25]  Georgios Ch. Sirakoulis,et al.  Hey Physarum! Can you Perform SLAM? , 2014, Int. J. Unconv. Comput..

[26]  Georgios Ch. Sirakoulis,et al.  A Simulation Tool for Modelling Pedestrian Dynamics during Evacuation of Large Areas , 2006, AIAI.

[27]  Andrew Schumann,et al.  PHYSARUM SPATIAL LOGIC , 2011 .

[28]  Robert Shield,et al.  Modeling the Effect of Leadership on Crowd Flow Dynamics , 2004, ACRI.

[29]  Georgios Ch. Sirakoulis,et al.  A cellular automaton simulation tool for modelling seismicity in the region of Xanthi , 2007, Environ. Model. Softw..

[30]  Fan Weicheng,et al.  Simulation of bi-direction pedestrian movement using a cellular automata model , 2003 .

[31]  Andrew Schumann,et al.  Toward semantical model of reaction-diffusion computing , 2009, Kybernetes.

[32]  Andreas Schadschneider,et al.  Friction effects and clogging in a cellular automaton model for pedestrian dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Karolin Baecker,et al.  Cellular Automata Modeling Of Physical Systems , 2016 .

[34]  David C. Brogan,et al.  Simulation level of detail for multiagent control , 2002, AAMAS '02.

[35]  Jian Li,et al.  Simulation of the kin behavior in building occupant evacuation based on Cellular Automaton , 2005 .

[36]  A. Tero,et al.  A mathematical model for adaptive transport network in path finding by true slime mold. , 2007, Journal of theoretical biology.

[37]  Stefania Bandini,et al.  Situated Cellular Agents: A Model to Simulate Crowding Dynamics , 2004, IEICE Trans. Inf. Syst..

[38]  Daniel Thalmann,et al.  Hierarchical Model for Real Time Simulation of Virtual Human Crowds , 2001, IEEE Trans. Vis. Comput. Graph..

[39]  Soraia Raupp Musse,et al.  Modeling individual behaviors in crowd simulation , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[40]  R. Feynman Simulating physics with computers , 1999 .

[41]  Ioannis G. Karafyllidis,et al.  A model for predicting forest fire spreading using cellular automata , 1997 .

[42]  Lizhong Yang,et al.  Exit dynamics of occupant evacuation in an emergency , 2006 .

[43]  Andrew Adamatzky Physarum machine: Implementation of Kolmogorov-Uspensky machine in biological substrat , 2007, ArXiv.

[44]  Andrew Adamatzky,et al.  Physarum Machine: Implementation of a Kolmogorov-Uspensky Machine on a Biological substrate , 2007, Parallel Process. Lett..

[45]  Ioannis G. Karafyllidis,et al.  A model for the prediction of oil slick movement and spreading using cellular automata , 1997 .

[46]  T. Nakagaki,et al.  Intelligence: Maze-solving by an amoeboid organism , 2000, Nature.

[47]  Georgios Ch. Sirakoulis,et al.  A CAD system for the construction and VLSI implementation of Cellular Automata algorithms using VHDL , 2003, Microprocess. Microsystems.

[48]  Tomohiro Shirakawa,et al.  On Simultaneous Construction of Voronoi Diagram and Delaunay Triangulation by Physarum polycephalum , 2009, Int. J. Bifurc. Chaos.

[49]  Michail-Antisthenis I. Tsompanas,et al.  Modeling and hardware implementation of an amoeba-like cellular automaton , 2012, Bioinspiration & biomimetics.

[50]  Weifeng Yuan,et al.  An evacuation model using cellular automata , 2007 .

[51]  C. Saloma,et al.  Streaming, disruptive interference and power-law behavior in the exit dynamics of confined pedestrians , 2002 .

[52]  T. Nakagaki,et al.  Path finding by tube morphogenesis in an amoeboid organism. , 2001, Biophysical chemistry.

[53]  Andrew Adamatzky,et al.  Physarum Machines: Computers from Slime Mould , 2010 .

[54]  Serge P. Hoogendoorn,et al.  Pedestrian Travel Behavior Modeling , 2005 .

[55]  G. Vichniac Simulating physics with cellular automata , 1984 .

[56]  Y. F. Yu,et al.  Cellular automaton simulation of pedestrian counter flow considering the surrounding environment. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Li Jian,et al.  Simulation of bi-direction pedestrian movement in corridor , 2005 .

[58]  S. Fiske,et al.  The Handbook of Social Psychology , 1935 .

[59]  Georgios Ch. Sirakoulis,et al.  An FPGA implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields , 2010, Microprocess. Microsystems.

[60]  Michael Schultz,et al.  A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals , 2007 .

[61]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[62]  Nagui M. Rouphail,et al.  Effect of Pedestrians on Capacity of Signalized Intersections , 1998 .

[63]  Jeff Jones,et al.  Road Planning with Slime Mould: if Physarum Built Motorways IT Would Route M6/M74 through Newcastle , 2009, Int. J. Bifurc. Chaos.

[64]  A. Tero,et al.  Rules for Biologically Inspired Adaptive Network Design , 2010, Science.

[65]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[66]  Ken A. Hawick,et al.  Scientific modeling with massively parallel SIMD computers , 1991, Proc. IEEE.

[67]  G. Sirakoulis,et al.  A cellular automaton model for the effects of population movement and vaccination on epidemic propagation , 2000 .

[68]  Katsuhiro Nishinari,et al.  Modelling of self-driven particles: Foraging ants and pedestrians , 2006 .

[69]  Lorenza Manenti,et al.  Adaptive pedestrian behaviour for the preservation of group cohesion , 2013, Complex Adapt. Syst. Model..