Biotechnological revalorization of Tequila waste and by-product streams for cleaner production – A review from bio-refinery perspective

Abstract In this paper, industrial processing and biotechnological revalorization of Tequila waste and by-product streams have been reviewed. Tequila production process generates different kind of waste and by-products with a huge potential to produce value-added products. Therefore, many research projects, scientific investigations and innovative utilizations of such waste and by-product streams have been the object of recent studies. Moreover, the bio-based transformation from a petrochemical-based economy to a bio-based economy necessitates the novel exploitation of cost-effective natural materials for both future biorefinery development and a range of value-added products of interests. The present review article focuses on an area not comprehensively reviewed previously, the potential of utilizing waste and by-product streams from current Tequila industry activities. The first part of this review focused on various processing aspects and prospects on the fermentative production of Tequila. In the second and third parts, statistical and sustainable aspects and the generation of waste and by-product streams of Tequila industry are critically reviewed, respectively. In the fourth part, various industrial and biotechnological applications of Tequila’s wastes are comprehensively discussed from a bio-refinery perspective. In conclusion, it is evident that biotransformation of waste and by-product streams has great potential and significant prospects for wider industrial and biotechnological applications.

[1]  G. Íñiguez,et al.  UTILIZACIÓN DE SUPBRODUCTOS DE LA INDUSTRIA TEQUILERA. PARTE 7. COMPOSTAJ E DE BAGAZO DE AGAVE Y VINAZAS TEQUILERAS , 2010 .

[2]  T. Ojumu,et al.  Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer , 2004 .

[3]  Hongfei Lin,et al.  Biomass characterization of Agave and Opuntia as potential biofuel feedstocks , 2015 .

[4]  M. B. Roncero,et al.  Enzymatic grafting of natural phenols to flax fibres: Development of antimicrobial properties. , 2012, Carbohydrate polymers.

[5]  J. F. Jimenez,et al.  UTILIZACIÓN DE SUBPRODUCTOS DE LA INDUSTRIA TEQUILERA. PARTE 11. COMPOSTAJE DE BAGAZO DE AGAVE CRUDO Y BIOSÓLIDOS PROVENIENTES DE UNA PLANTA DE TRATAMIENTO DE VINAZAS TEQUILERAS , 2013 .

[6]  William Faulkner,et al.  A multidisciplinary decision support tool for evaluating multiple biorefinery conversion technologies and supply chain performance , 2014, Clean Technologies and Environmental Policy.

[7]  Hafiz M.N. Iqbal,et al.  Characterization of purified and Xerogel immobilized Novel Lignin Peroxidase produced from Trametes versicolor IBL-04 using solid state medium of Corncobs , 2012, BMC Biotechnology.

[8]  G. Íñiguez,et al.  Utilización de subproductos de la industria tequilera: Parte 9. Monitoreo de la evolución del compostaje de dos fuentes distintas de bagazo de agave para la obtención de un substrato para jitomate , 2011 .

[9]  M. Riley,et al.  Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans , 2008, Biotechnology and bioengineering.

[10]  S. R. Couto,et al.  Application of solid-state fermentation to food industry—A review , 2006 .

[11]  G. Íñiguez,et al.  UTILIZACIÓN DE SUBPRODUCTOS DE LA INDUSTRIA TEQUILERA. PARTE 5. BIODEGRADACIÓN DEL MATERIAL DE DESCARNE DE LA INDUSTRIA DE CURTIDURÍA , 2003 .

[12]  M. Asgher,et al.  Kinetic characterization of purified laccase produced from Trametes versicolor IBL-04 in solid state bio-processing of corncobs , 2012, BioResources.

[13]  Hafiz M N Iqbal,et al.  Lignocellulose: A sustainable material to produce value-added products with a zero waste approach-A review. , 2017, International journal of biological macromolecules.

[14]  O. Martínez de la Vega,et al.  Analysis of genetic diversity in Agave tequilana var. Azul using RAPD markers , 2001, Euphytica.

[15]  Hafiz M.N. Iqbal,et al.  Development of bio-composites with novel characteristics through enzymatic grafting , 2015 .

[16]  E. Kachlishvili,et al.  Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peels and tree leaves , 2006 .

[17]  R. Weiner,et al.  Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. , 2005, International journal of systematic and evolutionary microbiology.

[18]  Hafiz M.N. Iqbal,et al.  “One-pot” synthesis and characterisation of novel P(3HB)–ethyl cellulose based graft composites through lipase catalysed esterification , 2014 .

[19]  Sarah Bowen Geographical indications : promoting local products in a global market , 2008 .

[20]  J. Labidi,et al.  Lignin valorization from side-streams produced during agricultural waste pulping and total chlorine free bleaching , 2017 .

[21]  Hafiz M.N. Iqbal,et al.  Poly(3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. , 2015, International journal of biological macromolecules.

[22]  Mahmoud M. El-Halwagi,et al.  Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. , 2014 .

[23]  Jihong Li,et al.  CHALLENGES OF CELLULOSIC ETHANOL PRODUCTION FROM XYLOSE-EXTRACTED CORNCOB RESIDUES , 2011 .

[24]  Zhijian Pei,et al.  Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. , 2016, Bioresource technology.

[25]  M. Skrifvars,et al.  All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals , 2014, Cellulose.

[26]  M. Asgher,et al.  Characterization of a novel manganese peroxidase purified from solid state culture of Trametes versicolor IBL-04 , 2011, BioResources.

[27]  K. Sudesh,et al.  Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters , 2000 .

[28]  Jalel Labidi,et al.  Lignin depolymerisation strategies: towards valuable chemicals and fuels. , 2014, Chemical Society reviews.

[29]  R. R. Macías,et al.  Evaluation of agave bagasse compost as a component of substrates to produce seedlings of blue agave , 2013 .

[30]  Sarah Bowen,et al.  Geographical indications, terroir, and socioeconomic and ecological sustainability: The case of tequila , 2009 .

[31]  Hafiz M.N. Iqbal,et al.  Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility , 2011 .

[32]  Hafiz M.N. Iqbal,et al.  Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes vericolor , 2011, BioResources.

[33]  Cristóbal N. Aguilar,et al.  Agave biotechnology: an overview , 2015, Critical reviews in biotechnology.

[34]  Hafiz M N Iqbal,et al.  Biotransformation of lignocellulosic materials into value-added products-A review. , 2017, International journal of biological macromolecules.

[35]  M. A. Sanromán,et al.  Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes , 2004, Biotechnology Letters.

[36]  Tajalli Keshavarz,et al.  Polyhydroxyalkanoates: bioplastics with a green agenda. , 2010, Current opinion in microbiology.

[37]  Pooja Katkar,et al.  Agave Americana Leaf Fibers , 2015 .

[38]  Alberto López-López,et al.  Tequila vinasses: generation and full scale treatment processes , 2010 .

[39]  J. Rojas,et al.  Population Dynamics of Scyphophorus acupunctatus (Coleoptera: Curculionidae) on Blue Agave , 2013 .

[40]  Pooja Singh,et al.  Using biomass residues from oil palm industry as a raw material for pulp and paper industry: potential benefits and threat to the environment , 2013, Environment, Development and Sustainability.

[41]  Hafiz M.N. Iqbal,et al.  Advances in the Valorization of Lignocellulosic Materials by Biotechnology: An Overview , 2013 .

[42]  R. Pérez,et al.  Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes. , 2008, Journal of environmental biology.

[43]  Hafiz M.N. Iqbal,et al.  PURIFICATION AND CHARACTERIZATION OF LiP PRODUCED BY Schyzophyllum commune IBL-06 USING BANANA STALK IN SOLID STATE CULTURES , 2012 .

[44]  Guoqiang Chen,et al.  The application of polyhydroxyalkanoates as tissue engineering materials. , 2005, Biomaterials.

[45]  Ana Valenzuela,et al.  Effects of soil management practices on soil fertility measurements on Agave tequilana plantations in Western Central Mexico , 2006 .

[46]  R M Rowell,et al.  Utilization of by-products from the tequila industry. Part 2: Potential value of Agave tequilana Weber azul leaves. , 2001, Bioresource technology.

[47]  M. Ramirez,et al.  Recycling Agave Bagasse of the Tequila Industry , 2014 .

[48]  Clementina R. Ramírez-Cortina,et al.  VALORIZACIÓN DE RESIDUOS AGROINDUSTRIALES DEL TEQUILA PARA ALIMENTACION DE RUMIANTES , 2012 .

[49]  Kornelis Blok,et al.  Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp. , 2012, The Science of the total environment.

[50]  Rachel A. Burton,et al.  Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study , 2015, PloS one.

[51]  H. S. Gentry,et al.  Agaves of Continental North America. , 1983 .

[52]  W. Hamad,et al.  Cellulose reinforced polymer composites and nanocomposites: a critical review , 2013, Cellulose.

[53]  S. Bansal,et al.  Production of Cellulases through Solid State Fermentation Using Kinnow Pulp as a Major Substrate , 2010 .

[54]  L. Levin,et al.  Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology , 2008 .

[55]  H. Jameel,et al.  Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. , 2016, Current opinion in biotechnology.

[56]  Rosalba Casas,et al.  Between traditions and modernity: Technological strategies at three tequila firms , 2006 .

[57]  A. Amore,et al.  Waste valorization by biotechnological conversion into added value products , 2013, Applied Microbiology and Biotechnology.

[58]  Shi-Yow Lin,et al.  Pretreatment and conversion of lignocellulose biomass into valuable chemicals , 2016 .

[59]  D. P. Chattopadhyay,et al.  Agave americana: A new source of textile fiber , 2012 .

[60]  Ruqayyah Masran,et al.  Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment , 2016, Applied Microbiology and Biotechnology.

[61]  H. Carrère,et al.  Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review , 2016 .

[62]  R M Rowell,et al.  Utilization of byproducts from the tequila industry: part 1: agave bagasse as a raw material for animal feeding and fiberboard production. , 2001, Bioresource technology.

[63]  G. V. Reddy,et al.  Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju) , 2003 .

[64]  Hafiz M.N. Iqbal,et al.  Development of novel antibacterial active, HaCaT biocompatible and biodegradable CA-g-P(3HB)-EC biocomposites with caffeic acid as a functional entity , 2015 .

[65]  C. Tarı,et al.  Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product , 2015 .

[66]  L. Macías-Rodríguez,et al.  Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production. , 2012, Journal of bioscience and bioengineering.

[67]  Hafiz M.N. Iqbal,et al.  Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products – A Review , 2016 .

[68]  Hafiz M.N. Iqbal,et al.  Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation. , 2014, Carbohydrate polymers.