FuSA touch display: a furry and scalable multi-touch display

We propose a furry and scalable multi-touch display called the "FuSA2 Touch Display." The furry type of tactile sensation of this surface affords various interactions such as stroking or clawing. The system utilizes plastic fiber optic bundles to realize a furry-type texture. The system can show visual feedback by projection and detects multi-touch input using a diffused illumination technique. We employed the optical feature of plastic fiber optics to integrate the input and output systems into such a simple configuration that the display becomes scalable. We implemented a 24-inch display, evaluated the visual feedback and touch detection features, and found that our implemented display encourages users to interact with it in various actions.

[1]  Jan O. Borchers,et al.  MudPad: tactile feedback and haptic texture overlay for touch surfaces , 2010, ITS '10.

[2]  Hiroshi Ishii,et al.  Designing kinetic interactions for organic user interfaces , 2008, CACM.

[3]  Ismo Rakkolainen,et al.  Laser scanning for the interactive walk-through fogScreen , 2005, VRST '05.

[4]  Raphael Wimmer,et al.  FlyEye: grasp-sensitive surfaces using optical fiber , 2010, TEI '10.

[5]  Roel Vertegaal,et al.  Towards more paper-like input: flexible input devices for foldable interaction styles , 2008, UIST '08.

[6]  Albrecht Schmidt,et al.  Audience behavior around large interactive cylindrical screens , 2011, CHI.

[7]  Hiroshi Ishii,et al.  Tangible bits: towards seamless interfaces between people, bits and atoms , 1997, CHI.

[8]  Yuta Sugiura,et al.  Fur display , 2009, SIGGRAPH ASIA '09.

[9]  Yoshifumi Kitamura,et al.  Real-time 3D interaction with ActiveCube , 2001, CHI Extended Abstracts.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Hideki Koike,et al.  PhotoelasticTouch: transparent rubbery tangible interface using an LCD and photoelasticity , 2009, UIST '09.

[12]  Naoki Kawakami,et al.  Fibratus tactile sensor using reflection on an optical lever , 2007, SIGGRAPH '07.

[13]  Masahiko Inami,et al.  Fur interface with bristling effect induced by vibration , 2010, AH.

[14]  Mike Wu,et al.  Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays , 2003, UIST '03.

[15]  Carsten Schwesig What makes an interface feel organic? , 2008, CACM.

[16]  Eli Blevis Sustainability implications of organic user interface technologies: an inky problem , 2008, CACM.

[17]  Nikolaus F. Troje,et al.  Paper windows: interaction techniques for digital paper , 2005, CHI.

[18]  Yoshifumi Kitamura,et al.  FuSA2 touch display , 2010, SIGGRAPH '10.

[19]  Jefferson Y. Han Low-cost multi-touch sensing through frustrated total internal reflection , 2005, UIST.

[20]  HolmanDavid,et al.  Organic user interfaces , 2008 .

[21]  Patrizia Marti Bringing playfulness to disabilities , 2010, NordiCHI.

[22]  Roel Vertegaal,et al.  Organic user interfaces: designing computers in any way, shape, or form , 2007, CACM.

[23]  Ivan Poupyrev,et al.  Gummi: a bendable computer , 2004, CHI '04.

[24]  Naoki Kawakami,et al.  GelForce: a vision-based traction field computer interface , 2005, CHI Extended Abstracts.

[25]  Jun Rekimoto Organic interaction technologies: from stone to skin , 2008, CACM.

[26]  Hiroshi Ishii,et al.  Illuminating clay: a 3-D tangible interface for landscape analysis , 2002, CHI.

[27]  Ivan Poupyrev,et al.  Gummi: user interface for deformable computers , 2003, CHI Extended Abstracts.

[28]  Jun Rekimoto,et al.  HoloWall: designing a finger, hand, body, and object sensitive wall , 1997, UIST '97.