A new way to extend t-norms, t-conorms and negations

This work presents a method of extending t-norms, t-conorms and fuzzy negations to a lattice-valued setting by preserving the largest possible number of properties of these fuzzy connectives which are invariants under homomorphisms. Further, we also apply this method to extend De Morgan triples, automorphisms and n-dimensional t-norms.

[1]  Gert de Cooman,et al.  Order norms on bounded partially ordered sets. , 1994 .

[2]  Benjamín R. C. Bedregal,et al.  T-Norms on Bounded Lattices: t-norm Morphisms and Operators , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[3]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[4]  Yong-woon Kim Pseudo quasi metric spaces , 1968 .

[5]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[6]  E. Stanley Lee,et al.  The n-dimensional fuzzy sets and Zadeh fuzzy sets based on the finite valued fuzzy sets , 2010, Comput. Math. Appl..

[7]  H. Künzi,et al.  On simultaneous extension of continuous partial functions , 1997 .

[8]  Adrião Duarte Dória Neto,et al.  Relating De Morgan triples with Atanassov's intuitionistic De Morgan triples via automorphisms , 2011, Int. J. Approx. Reason..

[9]  Joan Jacas,et al.  Fixed Points and Generators of Fuzzy Relations , 1994 .

[10]  Glad Deschrijver,et al.  A representation of t-norms in interval-valued L-fuzzy set theory , 2008, Fuzzy Sets Syst..

[11]  Radko Mesiar,et al.  On extensions of triangular norms on bounded lattices , 2008 .

[12]  Mitio Takano Strong completeness of lattice-valued logic , 2002, Arch. Math. Log..

[13]  Reflexive representability and stable metrics , 2009, 0901.1003.

[14]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[15]  Kazuo Murota,et al.  Extension of M-Convexity and L-Convexity to Polyhedral Convex Functions , 1999, Adv. Appl. Math..

[16]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[17]  Glad Deschrijver,et al.  The Archimedean property for t-norms in interval-valued fuzzy set theory , 2006, Fuzzy Sets Syst..

[18]  Benjamín R. C. Bedregal,et al.  The best interval representations of t-norms and automorphisms , 2006, Fuzzy Sets Syst..

[19]  Tomasa Calvo,et al.  On mixed De Morgan triplets , 1992 .

[20]  B. Bedregal,et al.  Extension of t-subnorms on complete lattices via retractions , 2011, 2011 Annual Meeting of the North American Fuzzy Information Processing Society.

[21]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[22]  P. García,et al.  Isomorphisms between de Morgan triplets , 1989 .

[23]  James R. Munkres,et al.  Topology; a first course , 1974 .

[24]  Benjamín R. C. Bedregal,et al.  Extension of fuzzy logic operators defined on bounded lattices via retractions , 2012, Comput. Math. Appl..

[25]  Humberto Bustince,et al.  A class of fuzzy multisets with a fixed number of memberships , 2012, Inf. Sci..

[26]  Glad Deschrijver Triangular norms which are meet-morphisms in interval-valued fuzzy set theory , 2011, Fuzzy Sets Syst..

[27]  Benjamín R. C. Bedregal,et al.  On interval fuzzy negations , 2010, Fuzzy Sets Syst..

[28]  J. Buckley,et al.  Fuzzy expert systems and fuzzy reasoning , 2004 .

[29]  Kiyomitsu Horiuchi,et al.  Extension of the concept of mappings using fuzzy sets , 1993 .

[30]  Prabhakar Akella,et al.  Structure of n-uninorms , 2007, Fuzzy Sets Syst..