Enantioselective optical forces in gain-functionalized single core-shell chiral nanoparticles

We propose a gain-assisted enantioselective scheme in dye-doped chiral particles, demonstrating optical pulling and pushing forces that can be tuned using externally controllable parameters. By controlling the concentration of dye molecules and pumping rate, we achieve all-optical chiral resolution of racemic mixtures and enantioselection of small dipolar chiral particles without relying on interference. This scheme is applicable to both lossless and lossy plasmonic chiral particles, making it a promising approach for chiral sensing, drug discovery, and molecular separation.

[1]  D. Tsai,et al.  Superhybrid Mode-Enhanced Optical Torques on Mie-Resonant Particles. , 2022, Nano letters.

[2]  R. Ali Tunable Anomalous Scattering and Negative Asymmetry Parameter in a Gain-Functionalized Low Refractive Index Sphere , 2022, ACS omega.

[3]  Huajin Chen,et al.  Selective transport of chiral particles by optical pulling forces , 2021, Optics Express.

[4]  Baoli Yao,et al.  Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum , 2021, Nanoscale advances.

[5]  F. A. Pinheiro,et al.  Gain-assisted optical tweezing of plasmonic and large refractive index microspheres , 2021, Journal of Optics.

[6]  F. A. Pinheiro,et al.  Enantioselection and chiral sorting of single microspheres using optical pulling forces. , 2021, Optics letters.

[7]  F. A. Pinheiro,et al.  Tailoring optical pulling forces with composite microspheres , 2020, 2006.09153.

[8]  M. Infusino,et al.  Gain-Assisted Optomechanical Position Locking of Metal/Dielectric Nanoshells in Optical Potentials , 2020 .

[9]  P. A. Maia Neto,et al.  Enantioselective manipulation of single chiral nanoparticles using optical tweezers. , 2020, Nanoscale.

[10]  A. De Luca,et al.  Resonant Coupling and Gain Singularities in Metal/Dielectric Multishells: Quasi-Static Versus T-Matrix Calculations , 2019, The Journal of Physical Chemistry C.

[11]  A. Govorov,et al.  Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches. , 2019, Annual review of physical chemistry.

[12]  Haobin Wang,et al.  Plasmonic circular dichroism of vesicle-like nanostructures by the template-less self-assembly of achiral Janus nanoparticles. , 2018, Nanoscale.

[13]  I. Gryczynski,et al.  Solvatochromic dye LDS 798 as microviscosity and pH probe. , 2017, Physical chemistry chemical physics : PCCP.

[14]  Amr A E Saleh,et al.  Nanoscopic control and quantification of enantioselective optical forces , 2017, Nature nanotechnology.

[15]  Harald Giessen,et al.  Chiral plasmonics , 2017, Science Advances.

[16]  Cheng-Wei Qiu,et al.  All-Optical Chirality-Sensitive Sorting via Reversible Lateral Forces in Interference Fields. , 2017, ACS nano.

[17]  Qiangbin Wang,et al.  Self‐Assembly of Chiral Plasmonic Nanostructures , 2016, Advanced materials.

[18]  F. A. Pinheiro,et al.  Spontaneous natural optical activity in disordered media , 2016, 1610.08432.

[19]  Baoli Yao,et al.  Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Shiyang Liu,et al.  Chirality sorting using two-wave-interference–induced lateral optical force , 2016 .

[21]  Amr A. E. Saleh,et al.  Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers , 2016 .

[22]  É. Duguet,et al.  Resonant isotropic optical magnetism of plasmonic nanoclusters in visible light , 2015 .

[23]  Federico Capasso,et al.  Lateral chirality-sorting optical forces , 2015, Proceedings of the National Academy of Sciences.

[24]  Baoquan Ding,et al.  Tunable optical activity of plasmonic dimers assembled by DNA origami. , 2015, Nanoscale.

[25]  Christine K. McGinn,et al.  Raspberry-like metamolecules exhibiting strong magnetic resonances. , 2015, ACS nano.

[26]  Etienne Brasselet,et al.  Optofluidic sorting of material chirality by chiral light , 2014, Nature Communications.

[27]  S. B. Wang,et al.  Lateral optical force on chiral particles near a surface , 2013, Nature Communications.

[28]  O. Brzobohatý,et al.  Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’ , 2013, Nature Photonics.

[29]  Hajime Ishihara,et al.  Proposed nonlinear resonance laser technique for manipulating nanoparticles. , 2012, Physical review letters.

[30]  Zhiyuan Fan,et al.  Chiral nanocrystals: plasmonic spectra and circular dichroism. , 2012, Nano letters.

[31]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[32]  A. Mazzulla,et al.  Chiral Self‐Assembled Solid Microspheres: A Novel Multifunctional Microphotonic Device , 2011, Advanced materials.

[33]  Filippo Capolino,et al.  Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain [Invited] , 2011 .

[34]  Jun Chen,et al.  Optical pulling force , 2011 .

[35]  V. Kitaev,et al.  Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly. , 2011, ACS nano.

[36]  W C Guida,et al.  The significance of chirality in drug design and development. , 2011, Current topics in medicinal chemistry.

[37]  Yeshaiahu Fainman,et al.  Negative radiation pressure on gain medium structures. , 2010, Optics letters.

[38]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.

[39]  G. Wagnière On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image , 2007 .

[40]  Weihai Ni,et al.  Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides. , 2005, Optics express.

[41]  Jing Zhang,et al.  Chiral nanotechnology. , 2005, Chirality.

[42]  Satoshi Kawata,et al.  Radiation Force Exerted on Subwavelength Particles near a Nanoaperture , 1999 .

[43]  P. Barber Absorption and scattering of light by small particles , 1984 .