An Improved Adaptive Filtering Approach for Removing Artifact from the Electroencephalogram

[1]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[2]  R. Sameni,et al.  An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts , 2014, Journal of Neuroscience Methods.

[3]  Murielle Kirkove,et al.  Comparative evaluation of existing and new methods for correcting ocular artifacts in electroencephalographic recordings , 2014, Signal Process..

[4]  Marina Schmid,et al.  An Introduction To The Event Related Potential Technique , 2016 .

[5]  ELECTRICAL POTENTIALS FROM THE INTACT HUMAN BRAIN. , 1968, Science.

[6]  P. Berg,et al.  A fast method for forward computation of multiple-shell spherical head models. , 1994, Electroencephalography and clinical neurophysiology.

[7]  R. Srinivasan,et al.  Removal of ocular artifacts from EEG using an efficient neural network based adaptive filtering technique , 1999, IEEE Signal Processing Letters.

[8]  R. B. Reilly,et al.  FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection , 2010, Journal of Neuroscience Methods.

[9]  R. Ward,et al.  EMG and EOG artifacts in brain computer interface systems: A survey , 2007, Clinical Neurophysiology.

[10]  G. Pfurtscheller,et al.  A fully automated correction method of EOG artifacts in EEG recordings , 2007, Clinical Neurophysiology.

[11]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[12]  R. Kass,et al.  Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. , 2004, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[13]  J. Wolpaw,et al.  Brain-Computer Interfaces: Principles and Practice , 2012 .

[14]  Glenn F. Wilson,et al.  Performance and Psychophysiological Measures of Fatigue Effects on Aviation Related Tasks of Varying Difficulty , 2007 .

[15]  Tzyy-Ping Jung,et al.  Real-World Neuroimaging Technologies , 2013, IEEE Access.

[16]  Patrick Berg,et al.  Artifact Correction of the Ongoing EEG Using Spatial Filters Based on Artifact and Brain Signal Topographies , 2002, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[17]  Robert E Kass,et al.  An Implementation of Bayesian Adaptive Regression Splines (BARS) in C with S and R Wrappers. , 2008, Journal of statistical software.

[18]  E. Whitham,et al.  Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20Hz are contaminated by EMG , 2007, Clinical Neurophysiology.

[19]  H. Semlitsch,et al.  A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. , 1986, Psychophysiology.

[20]  B. Rockstroh,et al.  Removal of ocular artifacts from the EEG--a biophysical approach to the EOG. , 1985, Electroencephalography and clinical neurophysiology.

[21]  F. Matsuo,et al.  Electrical phenomena associated with movements of the eyelid. , 1975, Electroencephalography and clinical neurophysiology.

[22]  Dorothy V. M. Bishop,et al.  Journal of Neuroscience Methods , 2015 .

[23]  James C. Christensen,et al.  Coadaptive Aiding and Automation Enhance Operator Performance , 2013, Hum. Factors.

[24]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[25]  Eric L. Miller,et al.  Nonlocal Means Denoising of ECG Signals , 2012, IEEE Transactions on Biomedical Engineering.

[26]  R. Barry,et al.  Removal of ocular artifact from the EEG: a review , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[27]  Tharmalingam Ratnarajah,et al.  Robust adaptive techniques for minimization of EOG artefacts from EEG signals , 2006, Signal Process..

[28]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[29]  R. Barry,et al.  EOG correction of blinks with saccade coefficients: a test and revision of the aligned-artefact average solution , 2000, Clinical Neurophysiology.

[30]  Tzyy-Ping Jung,et al.  Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.

[31]  S. Luck,et al.  The effects of electrode impedance on data quality and statistical significance in ERP recordings. , 2010, Psychophysiology.

[32]  J. C. Woestenburg,et al.  The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain , 1983, Biological Psychology.

[33]  Tobias S. Andersen,et al.  Classification of independent components of EEG into multiple artifact classes. , 2015, Psychophysiology.

[34]  Erkki Oja,et al.  One-unit Learning Rules for Independent Component Analysis , 1996, NIPS.

[35]  Ricardo Nuno Vig Extraction of' ocular artefacts from EEG using independent component analysis , 1997 .

[36]  Junshui Ma,et al.  High-throughput ocular artifact reduction in multichannel electroencephalography (EEG) using component subspace projection , 2011, Journal of Neuroscience Methods.

[37]  R. Barry,et al.  EOG correction: which regression should we use? , 2000, Psychophysiology.

[38]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[39]  Pierrick Coupé,et al.  An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images , 2008, IEEE Transactions on Medical Imaging.

[40]  H. Berger,et al.  Über das Elektrenkephalogramm des Menschen , 1937, Archiv für Psychiatrie und Nervenkrankheiten.

[41]  R. Barry,et al.  EOG correction: a new aligned-artifact average solution. , 1998, Electroencephalography and clinical neurophysiology.

[42]  V. A. Makarov,et al.  Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis , 2006, Journal of Neuroscience Methods.

[43]  Martin J. McKeown,et al.  Removing electroencephalographic artifacts: comparison between ICA and PCA , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[44]  T. Gasser,et al.  Correction of EOG artifacts in event-related potentials of the EEG: aspects of reliability and validity. , 1982, Psychophysiology.

[45]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[46]  Jan W. M. Bergmans,et al.  Using an Eye Tracker for Accurate Eye Movement Artifact Correction , 2007, IEEE Transactions on Biomedical Engineering.

[47]  T. Gasser,et al.  The transfer of EOG activity into the EEG for eyes open and closed. , 1985, Electroencephalography and clinical neurophysiology.

[48]  M.T. Hagan,et al.  Multireference adaptive noise canceling applied to the EEG , 1997, IEEE Transactions on Biomedical Engineering.

[49]  Richard J. Davidson,et al.  Electromyogenic artifacts and electroencephalographic inferences revisited , 2011, NeuroImage.

[50]  R. Barry,et al.  EOG correction: a new perspective. , 1998, Electroencephalography and clinical neurophysiology.

[51]  T. Åkerstedt,et al.  Subjective and objective sleepiness in the active individual. , 1990, The International journal of neuroscience.

[52]  D. Overton,et al.  Distribution of eye movement and eyeblink potentials over the scalp. , 1969, Electroencephalography and clinical neurophysiology.

[53]  Gary E. Birch,et al.  Online Removal of Eye Movement and Blink EEG Artifacts Using a High-Speed Eye Tracker , 2012, IEEE Transactions on Biomedical Engineering.

[54]  C.W. Anderson,et al.  Geometric subspace methods and time-delay embedding for EEG artifact removal and classification , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[55]  T. Gasser,et al.  The correction of EOG artifacts by frequency dependent and frequency independent methods. , 1986, Psychophysiology.

[56]  Glenn F. Wilson,et al.  Performance Enhancement in an Uninhabited Air Vehicle Task Using Psychophysiologically Determined Adaptive Aiding , 2007, Hum. Factors.

[57]  Scott Makeig,et al.  BCILAB: a platform for brain–computer interface development , 2013, Journal of neural engineering.

[58]  F. Gibbs,et al.  THE ELECTRO-ENCEPHALOGRAM IN EPILEPSY AND IN CONDITIONS OF IMPAIRED CONSCIOUSNESS , 1935 .

[59]  J. Polich,et al.  P300 and blink instructions , 2000, Clinical Neurophysiology.

[60]  J. Kamiya,et al.  A simple on-line technique for removing eye movement artifacts from the EEG. , 1973, Electroencephalography and clinical neurophysiology.

[61]  Elsa Andrea Kirchner,et al.  Effects of eye artifact removal methods on single trial P300 detection, a comparative study , 2014, Journal of Neuroscience Methods.

[62]  James C. Christensen,et al.  Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload , 2015, Front. Neurosci..

[63]  P. Berg,et al.  Ocular artifacts in EEG and event-related potentials I: Scalp topography , 2005, Brain Topography.

[64]  Terrence J. Sejnowski,et al.  Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis , 2007, NeuroImage.

[65]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[66]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[67]  Richard J. Davidson,et al.  Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG , 2010, NeuroImage.

[68]  Yu-Tai Tsai,et al.  The Removal of Ocular Artifacts from EEG Signals Using Adaptive Filters Based on Ocular Source Components , 2010, Annals of Biomedical Engineering.

[69]  Glenn F. Wilson,et al.  Removal of ocular artifacts from the EEG: a comparison between time-domain regression method and adaptive filtering method using simulated data , 2007, Medical & Biological Engineering & Computing.

[70]  J. Gotman,et al.  A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and Bayesian classification , 2006, Clinical Neurophysiology.

[71]  Tom Eichele,et al.  Semi-automatic identification of independent components representing EEG artifact , 2009, Clinical Neurophysiology.

[72]  José V. Manjón,et al.  MRI denoising using Non-Local Means , 2008, Medical Image Anal..

[73]  C. Joyce,et al.  Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. , 2004, Psychophysiology.

[74]  S. Hillyard,et al.  Eye movement artifact in the CNV. , 1970, Electroencephalography and clinical neurophysiology.

[75]  T. Sejnowski,et al.  Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects , 2000, Clinical Neurophysiology.

[76]  Lucas C. Parra,et al.  Blind Source Separation via Generalized Eigenvalue Decomposition , 2003, J. Mach. Learn. Res..

[77]  Tzyy-Ping Jung,et al.  Extended ICA Removes Artifacts from Electroencephalographic Recordings , 1997, NIPS.

[78]  Terence W. Picton,et al.  Ocular artifacts in recording EEGs and event-related potentials II: Source dipoles and source components , 2005, Brain Topography.

[79]  P. Berg,et al.  Dipole models of eye movements and blinks. , 1991, Electroencephalography and clinical neurophysiology.

[80]  E Donchin,et al.  A new method for off-line removal of ocular artifact. , 1983, Electroencephalography and clinical neurophysiology.

[81]  D. Lykken,et al.  Two-year retest stability of eye tracking performance and a comparison of electro-oculographic and infrared recording techniques: evidence of EEG in the electro-oculogram. , 1981, Psychophysiology.

[82]  G. Gratton Dealing with artifacts: The EOG contamination of the event-related brain potential , 1998 .

[83]  Xi Chen,et al.  A Robust and Fast Non-Local Means Algorithm for Image Denoising , 2008, Journal of Computer Science and Technology.

[84]  P Berg,et al.  A multiple source approach to the correction of eye artifacts. , 1994, Electroencephalography and clinical neurophysiology.

[85]  S. Makeig,et al.  Imaging human EEG dynamics using independent component analysis , 2006, Neuroscience & Biobehavioral Reviews.

[86]  T. Ratnarajah,et al.  H/sup /spl infin// adaptive filters for eye blink artifact minimization from electroencephalogram , 2005, IEEE Signal Processing Letters.

[87]  Dimitri Van De Ville,et al.  SURE-Based Non-Local Means , 2009, IEEE Signal Processing Letters.

[88]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[89]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[90]  R. Oostenveld,et al.  Independent EEG Sources Are Dipolar , 2012, PloS one.

[91]  P. Nunez,et al.  Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease , 2014, Brain Research.

[92]  S. Luck An Introduction to the Event-Related Potential Technique , 2005 .

[93]  A. S. Gevins,et al.  Ocular Artifact Minimization by Adaptive Filtering , 1994, IEEE Seventh SP Workshop on Statistical Signal and Array Processing.

[94]  P. König,et al.  Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data , 2012, Front. Hum. Neurosci..

[95]  P Berg,et al.  Dipole modelling of eye activity and its application to the removal of eye artefacts from the EEG and MEG. , 1991, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[96]  E. Adrian,et al.  THE BERGER RHYTHM: POTENTIAL CHANGES FROM THE OCCIPITAL LOBES IN MAN , 1934 .

[97]  G Pfurtscheller,et al.  Frequency dependence of the transmission of the EEG from cortex to scalp. , 1975, Electroencephalography and clinical neurophysiology.

[98]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[99]  Benjamin Friedlander,et al.  Least squares algorithms for adaptive linear-phase filtering , 1982 .

[100]  Panagiotis D. Bamidis,et al.  REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts , 2011, Biomed. Signal Process. Control..

[101]  S. Romero,et al.  Ocular Reduction in EEG Signals Based on Adaptive Filtering, Regression and Blind Source Separation , 2008, Annals of Biomedical Engineering.

[102]  W BARRY,et al.  INFLUENCE OF EYE LID MOVEMENT UPON ELECTRO-OCULOGRAPHIC RECORDING OF VERTICAL EYE MOVEMENTS. , 1965, Aerospace medicine.

[103]  Joep J. M. Kierkels,et al.  A model-based objective evaluation of eye movement correction in EEG recordings , 2006, IEEE Transactions on Biomedical Engineering.

[104]  Andreas Ziehe,et al.  Automated ocular artifact removal: comparing regression and component-based methods , 2009 .

[105]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[106]  G. Wilson,et al.  Removal of ocular artifacts from electro-encephalogram by adaptive filtering , 2004, Medical and Biological Engineering and Computing.

[107]  A. Mognon,et al.  ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. , 2011, Psychophysiology.