Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth

aDepartment of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, USA bDepartment of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA cDepartment of Mechanical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, USA dGeneral Motors Research and Development Center, Warren, Michigan 48090, USA

[1]  Diana Golodnitsky,et al.  The sei model—application to lithium-polymer electrolyte batteries , 1995 .

[2]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[3]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[4]  K. Leung Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms , 2013, 1307.3165.

[5]  T. Homma,et al.  In Situ Observation of Dendrite Growth of Electrodeposited Li Metal , 2010 .

[6]  K. Recker,et al.  Directional solidification of the LiF-LiBaF3 eutectic , 1988, Naturwissenschaften.

[7]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[8]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[9]  Y. Qi,et al.  General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes , 2015 .

[10]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[11]  W. Marsden I and J , 2012 .

[12]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[13]  D. Aurbach,et al.  The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems , 1989 .

[14]  Yue Qi,et al.  Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries , 2013 .

[15]  J. Gilman,et al.  Direct Measurements of the Surface Energies of Crystals , 1960 .

[16]  Doron Aurbach,et al.  Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy , 2000 .

[17]  Lijuan Song,et al.  Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase from Density Functional Theory Study , 2011 .

[18]  V. Anderson,et al.  Experimental equations of state for cesium and lithium metals to 20 kbar and the high-pressure behavior of the alkali metals. , 1985, Physical review. B, Condensed matter.

[19]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[20]  M. Bruno,et al.  Ab initio quantum-mechanical modeling of the (0 0 1), (1¯01) and (1 1 0) surfaces of zabuyelite (Li2CO3) , 2007 .

[21]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[22]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[23]  P. Kaghazchi,et al.  The role of electrostatic effects in determining the structure of LiF-graphene interfaces , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[25]  J. Steiger,et al.  Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium , 2014 .

[26]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[27]  Sehee Lee,et al.  Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies. , 2011, Journal of the American Chemical Society.

[28]  Yasuhiro Fukunaka,et al.  Optical observation of Li dendrite growth in ionic liquid , 2013 .

[29]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[30]  A. Hollenkamp,et al.  Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes , 2013 .

[31]  Emanuel Peled,et al.  Film forming reaction at the lithium/electrolyte interface , 1983 .

[32]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[33]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[36]  C. Wolverton,et al.  First-principles calculations of β″-Mg5Si6/α-Al interfaces , 2007 .

[37]  Marshall C. Smart,et al.  Effects of Electrolyte Composition on Lithium Plating in Lithium-Ion Cells , 2011 .

[38]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[39]  Y. Idemoto,et al.  Crystal structure of (LixK1-x)2Co3 (x = 0, 0.43, 0.5, 0.62, 1) by neutron powder diffraction analysis , 1998 .

[40]  M. Armand,et al.  Building better batteries , 2008, Nature.

[41]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[42]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[43]  K. Kokko,et al.  First-principles calculations for work function and surface energy of thin lithium films , 1996 .

[44]  Weidong Zhou,et al.  Toward High Cycle Efficiency of Silicon‐Based Negative Electrodes by Designing the Solid Electrolyte Interphase , 2015 .

[45]  P. Kohl,et al.  Nucleation of Electrodeposited Lithium Metal: Dendritic Growth and the Effect of Co-Deposited Sodium , 2013 .

[46]  Thomas F. Miller,et al.  Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries , 2012 .

[47]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[48]  Peng Lu,et al.  Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries , 2014 .

[49]  Hiroshi Tamura,et al.  XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4 , 1995 .

[50]  Peng Lu,et al.  Lithium transport within the solid electrolyte interphase , 2011 .

[51]  Kyeongjae Cho,et al.  Electrode-Electrolyte Interface for Solid State Li-Ion Batteries: Point Defects and Mechanical Strain , 2014 .

[52]  V. Fiorentini,et al.  Extracting convergent surface energies from slab calculations , 1996 .

[53]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[54]  J. Tarascon,et al.  Lithium metal stripping/plating mechanisms studies: A metallurgical approach , 2006 .