Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin.

The tough bulk of dentin in teeth supports enamel, creating cutting and grinding biostructures with superior failure resistance that is not fully understood. Synchrotron-based diffraction methods, utilizing micro- and nanofocused X-ray beams, reveal that the nm-sized mineral particles aligned with collagen are precompressed and that the residual strains vanish upon mild annealing. We show the link between the mineral nanoparticles and known damage propagation trajectories in dentin, suggesting a previously overlooked compression-mediated toughening mechanism.

[1]  A. Telser,et al.  Bovine and equine peritubular and intertubular dentin. , 2014, Acta biomaterialia.

[2]  Rizhi Wang,et al.  Inelastic deformation and microcracking process in human dentin. , 2013, Journal of structural biology.

[3]  A. Telser,et al.  Near tubule and intertubular bovine dentin mapped at the 250 nm level. , 2011, Journal of structural biology.

[4]  P. Fratzl,et al.  Bioinspired Design Criteria for Damage‐Resistant Materials with Periodically Varying Microstructure , 2011 .

[5]  S. Weiner,et al.  Crystallization Pathways in Biomineralization , 2011 .

[6]  R. P. Hoo,et al.  Cooperation of length scales and orientations in the deformation of bovine bone. , 2011, Acta biomaterialia.

[7]  N. Adachi,et al.  Thermal expansion of hydroxyapatite between − 100 °C and 50 °C , 2009 .

[8]  E. Zolotoyabko,et al.  Nacre in Mollusk Shells as a Multilayered Structure with Strain Gradient , 2009 .

[9]  A. Sugeta,et al.  Heat Treatment Strengthens Human Dentin , 2008, Journal of dental research.

[10]  P. Bleuet,et al.  Probing the structure of heterogeneous diluted materials by diffraction tomography. , 2008, Nature materials.

[11]  F De Carlo,et al.  High energy X-ray scattering tomography applied to bone. , 2008, Journal of structural biology.

[12]  E. Zolotoyabko,et al.  Biomineralization of calcium carbonate: structural aspects , 2007 .

[13]  A. Veis,et al.  Peritubular Dentin, a Vertebrate Apatitic Mineralized Tissue without Collagen: Role of a Phospholipid-Proteolipid Complex , 2007, Calcified Tissue International.

[14]  S. Stock,et al.  Micromechanical response of mineral and collagen phases in bone. , 2007, Journal of structural biology.

[15]  N. Adir,et al.  Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules. , 2006, Journal of structural biology.

[16]  I. Ivanov,et al.  The influence of foreign ions on the crystal lattice of hydroxyapatite upon heating , 2006 .

[17]  D. Arola,et al.  Tubule orientation and the fatigue strength of human dentin. , 2006, Biomaterials.

[18]  J. Quintana,et al.  Anisotropic lattice distortions in the mollusk-made aragonite: a widespread phenomenon. , 2006, Journal of structural biology.

[19]  R. O. Ritchie,et al.  The dentin–enamel junction and the fracture of human teeth , 2005, Nature materials.

[20]  M. Morris,et al.  Highly Ordered Interstitial Water Observed in Bone by Nuclear Magnetic Resonance , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[21]  R O Ritchie,et al.  Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. , 2003, Biomaterials.

[22]  R. Ritchie,et al.  In vitro fracture toughness of human dentin. , 2002, Journal of biomedical materials research. Part A.

[23]  S. Weiner,et al.  Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. , 1999, Journal of structural biology.

[24]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[25]  D. Watts,et al.  Fracture Toughness of Human Dentin , 1986, Journal of dental research.

[26]  J. Katz,et al.  Elastic properties of apatites , 1982 .

[27]  K. Kawasaki,et al.  On the incremental lines in human dentine as revealed by tetracycline labeling. , 1975, Journal of anatomy.

[28]  E. Johansen,et al.  Electron-microscopic observations on sound human dentine. , 1962, Archives of oral biology.

[29]  D. J. Anderson Measurement of Stress in Mastication. II , 1956, Journal of dental research.

[30]  Juliana Ivancik,et al.  The importance of microstructural variations on the fracture toughness of human dentin. , 2013, Biomaterials.

[31]  D. Dunand,et al.  Variability in the elastic properties of bovine dentin at multiple length scales. , 2012, Journal of the mechanical behavior of biomedical materials.

[32]  Robert Cywinski,et al.  2D mapping of texture and lattice parameters of dental enamel. , 2007, Biomaterials.

[33]  S. Weiner,et al.  Human root dentin: structural anisotropy and Vickers microhardness isotropy. , 1998, Connective tissue research.

[34]  P. Fratzl,et al.  Collagen packing and mineralization. An x-ray scattering investigation of turkey leg tendon. , 1993, Biophysical journal.