Covariance complexity and rates of return on assets.

Abstract This paper considers the estimation of the expected rate of return on a set of risky assets. The approach to estimation focuses on the covariance matrix for the returns. The structure in the covariance matrix determines shared information which is useful in estimating the mean return for each asset. An empirical Bayes estimator is developed using the covariance structure of the returns distribution. The estimator is an improvement on the maximum likelihood and Bayes–Stein estimators in terms of mean squared error. The effect of reduced estimation error on accumulated wealth is analyzed for the portfolio choice model with constant relative risk aversion utility.

[1]  N. H. Hakansson.,et al.  Stein and CAPM estimators of the means in asset allocation , 1995 .

[2]  H. Konno,et al.  Internationally Diversified Investment Using an Integrated Portfolio Model , 1998 .

[3]  Vijay S. Bawa,et al.  The effect of estimation risk on optimal portfolio choice , 1976 .

[4]  Salvatore D. Morgera,et al.  Information theoretic covariance complexity and its relation to pattern recognition , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Klaus Reiner Schenk-Hoppé,et al.  Evolutionary stability of portfolio rules in incomplete markets , 2005 .

[6]  William T. Ziemba,et al.  Growth versus security tradeoffs indynamic investment analysis , 1999, Ann. Oper. Res..

[7]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[8]  William T. Ziemba,et al.  Time to wealth goals in capital accumulation , 2005 .

[9]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[10]  Ľuboš Pástor,et al.  Costs of Equity Capital and Model Mispricing , 1998 .

[11]  Gunter Löffler,et al.  The effects of estimation error on measures of portfolio credit risk , 2003 .

[12]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[13]  C. S. Jones,et al.  Mutual Fund Performance with Learning Across Funds , 2002 .

[14]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[15]  K. Spremann,et al.  Risk and Capital , 1984 .

[16]  L. C. G. Rogers,et al.  The relaxed investor and parameter uncertainty , 2001, Finance Stochastics.

[17]  W. Whitt,et al.  Portfolio choice and the Bayesian Kelly criterion , 1996, Advances in Applied Probability.

[18]  Robert A. Korajczyk,et al.  The Arbitrage Pricing Theory and Multifactor Models of Asset Returns , 1993, Finance.

[19]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[20]  B. Efron,et al.  Empirical Bayes on vector observations: An extension of Stein's method , 1972 .

[21]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[22]  Peter A. Frost,et al.  An Empirical Bayes Approach to Efficient Portfolio Selection , 1986, Journal of Financial and Quantitative Analysis.