Total Synthesis of a Functional Designer Eukaryotic Chromosome

Designer Chromosome One of the ultimate aims of synthetic biology is to build designer organisms from the ground up. Rapid advances in DNA synthesis has allowed the assembly of complete bacterial genomes. Eukaryotic organisms, with their generally much larger and more complex genomes, present an additional challenge to synthetic biologists. Annaluru et al. (p. 55, published online 27 March) designed a synthetic eukaryotic chromosome based on yeast chromosome III. The designer chromosome, shorn of destabilizing transfer RNA genes and transposons, is ∼14% smaller than its wild-type template and is fully functional with every gene tagged for easy removal. A synthetic version of yeast chromosome III with every gene tagged can substitute for the original. Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871–base pair designer eukaryotic chromosome, synIII, which is based on the 316,617–base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.

Judy Qiu | Jessilyn Dunn | Michalis Hadjithomas | Yizhi Cai | Joel S. Bader | Murat Bilgel | Jef D. Boeke | James E. DiCarlo | Romain Koszul | Neta Agmon | Gilles Fischer | Alex Rhee | Kun Yang | Nicolas Agier | Ruchi Patel | Eric M. Cooper | Aaron M. Moore | Srinivasan Chandrasegaran | Leslie A. Mitchell | Jeffrey S. Han | Venkatesh Srinivas | Andrew D. Wong | Sarah M. Richardson | Jessica S. Dymond | Lisa Z. Scheifele | Jennifer Tullman | Jonathan Liu | Zheng Kuang | J. Bader | J. Boeke | A. Rhee | J. Qiu | S. Chandrasegaran | K. Zeller | J. Dunn | Narayana Annaluru | H. Muller | S. Ramalingam | K. Kandavelou | Viktoriya London | S. Richardson | E. M. Cooper | G. Fischer | Yizhi Cai | Zheng Kuang | G. Stracquadanio | M. Bilgel | P. Hadidi | Nicolas Agier | L. Mitchell | Won Chan Oh | Pavlo Bohutskyi | R. Koszul | Michalis Hadjithomas | Ina Y. Soh | J. Tullman | Isabel E Ishizuka | Héloïse Muller | Giovanni Stracquadanio | Karthikeyan Kandavelou | Mariya London | Kimberly M. Cirelli | Narayana Annaluru | Allison Suarez | A. Yeluru | Pavlo Bohutskyi | Neta Agmon | Remus S Wong | Katrina Caravelli | Jason I Feinberg | Remus S. Wong | Karen Zeller | Matthew G. Rubashkin | Pasha Hadidi | Jessica E McDade | J. Andrew Martin | Pablo A. Lee | Alexandra McMillan | Sivaprakash Ramalingam | Viktoriya London | Kimberly Cirelli | Zheyuan Guo | Apurva Yeluru | Sindurathy Murugan | Kristin M. Boulier | Brian J. Capaldo | Joy Chang | Kristie Charoen | Woo Jin Choi | Peter Deng | Judy Doong | Jason I. Feinberg | Christopher Fernandez | Charlotte E. Floria | David Gladowski | Isabel Ishizuka | Javaneh Jabbari | Calvin Y. L. Lau | Sean Li | Denise Lin | Matthias E. Linder | Jonathan Ling | Jaime Liu | Mariya London | Henry Ma | Jessica Mao | Jessica E. McDade | Yu Ouyang | Marina Paul | Laura C. Paulsen | Nathaniel E. Sotuyo | Andy Wong | Remus Wong | Wei Rose Xie | Yijie Xu | Allen T. Yu | Kun Yang | Yijie Xu | A. McMillan | J. Doong | Javaneh Jabbari | Jessica Mao | J. Ling | Jonathan Liu | Yuxiao Ouyang | Henry Ma | A. Suarez | W. Xie | A. Wong | K. Boulier | Kristie Charoen | Venkatesh Srinivas | P. A. Lee | Katrina Caravelli | Zheyuan Guo | Sindurathy Murugan | J. A. Martin | Joy Chang | W. Choi | Peter Deng | Christopher Fernandez | C. Floria | D. Gladowski | Sean Li | Denise Lin | Jaime Liu | Jon Q. Liu | Ruchi Patel | Marina Paul | Ouyang Yu | Zheyuan Guo | Jessica Z. Mao | Gilles Fischer | Giovanni Stracquadanio | Pavlo Bohutski | Jaime Liu | M. London | Alex Rhee | N. Annaluru | Pasha Hadidi | Kristin M. Boulier

[1]  G. Fischer,et al.  The Spatiotemporal Program of Replication in the Genome of Lachancea kluyveri , 2013, Genome biology and evolution.

[2]  Carolin A. Müller,et al.  Conservation of replication timing reveals global and local regulation of replication origin activity , 2012, Genome research.

[3]  Mark Stitt,et al.  RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics , 2012, Nucleic Acids Res..

[4]  Jef Boeke,et al.  The Saccharomyces cerevisiae SCRaMbLE system and genome minimization , 2012, Bioengineered bugs.

[5]  Jef D Boeke,et al.  The Build-a-Genome course. , 2012, Methods in molecular biology.

[6]  Jessica S. Dymond,et al.  Assembling DNA fragments by USER fusion. , 2012, Methods in molecular biology.

[7]  Jessica S. Dymond,et al.  Assembling large DNA segments in yeast. , 2012, Methods in molecular biology.

[8]  Joel S. Bader,et al.  Synthetic chromosome arms function in yeast and generate phenotypic diversity by design , 2011, Nature.

[9]  Farren J. Isaacs,et al.  Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement , 2011, Science.

[10]  D. G. Gibson,et al.  Enzymatic Assembly of Overlapping DNA Fragments , 2011, Methods in Enzymology.

[11]  D. G. Gibson Gene and genome construction in yeast. , 2011, Current protocols in molecular biology.

[12]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[13]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[14]  Joel S. Bader,et al.  CloneQC: lightweight sequence verification for synthetic biology , 2010, Nucleic acids research.

[15]  D. Gottschling,et al.  The Mother Enrichment Program: A Genetic System for Facile Replicative Life Span Analysis in Saccharomyces cerevisiae , 2009, Genetics.

[16]  Farren J. Isaacs,et al.  Programming cells by multiplex genome engineering and accelerated evolution , 2009, Nature.

[17]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[18]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[19]  Jef D Boeke,et al.  Teaching Synthetic Biology, Bioinformatics and Engineering to Undergraduates: The Interdisciplinary Build-a-Genome Course , 2009, Genetics.

[20]  J Craig Venter,et al.  One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome , 2008, Proceedings of the National Academy of Sciences.

[21]  T. Itoh,et al.  Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. , 2008, Genes & development.

[22]  W. J. Dickinson,et al.  A genome-wide view of the spectrum of spontaneous mutations in yeast , 2008, Proceedings of the National Academy of Sciences.

[23]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[24]  C. A. Coulson,et al.  The distribution of the numbers of mutants in bacterial populations , 1949, Journal of Genetics.

[25]  J. Craig Venter,et al.  Genome Transplantation in Bacteria: Changing One Species to Another , 2007, Science.

[26]  F. Spencer,et al.  Systematic genome instability screens in yeast and their potential relevance to cancer , 2007, Proceedings of the National Academy of Sciences.

[27]  F. Blattner,et al.  Emergent Properties of Reduced-Genome Escherichia coli , 2006, Science.

[28]  J. Boeke,et al.  GeneDesign: rapid, automated design of multikilobase synthetic genes. , 2006, Genome research.

[29]  D. Endy,et al.  Refactoring bacteriophage T7 , 2005, Molecular systems biology.

[30]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[31]  T. Itoh,et al.  Cohesin relocation from sites of chromosomal loading to places of convergent transcription , 2004, Nature.

[32]  P. Philippsen,et al.  The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome , 2004, Science.

[33]  A. Paul,et al.  Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template , 2002, Science.

[34]  J. Boeke,et al.  Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR‐mediated gene disruption and other applications , 1998, Yeast.

[35]  P. Philippsen,et al.  Heterologous HIS3 Marker and GFP Reporter Modules for PCR‐Targeting in Saccharomyces cerevisiae , 1997, Yeast.

[36]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[37]  X. Chen,et al.  Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W. Stemmer,et al.  Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. , 1995, Gene.

[39]  B. Dujon,et al.  The complete DNA sequence of yeast chromosome III , 1992, Nature.

[40]  D. Botstein,et al.  Plasmid construction by homologous recombination in yeast. , 1987, Gene.

[41]  J R Johnston,et al.  Genealogy of principal strains of the yeast genetic stock center. , 1986, Genetics.

[42]  J. Strathern,et al.  Regulation of mating-type information in yeast. Negative control requiring sequences both 5' and 3' to the regulated region. , 1984, Journal of molecular biology.

[43]  D. Schwartz,et al.  Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis , 1984, Cell.

[44]  J. Strathern,et al.  Efficient production of a ring derivative of chromosome III by the mating-type switching mechanism in Saccharomyces cerevisiae , 1983, Molecular and cellular biology.

[45]  K. Nasmyth,et al.  The structure of transposable yeast mating type loci , 1980, Cell.

[46]  I. Herskowitz,et al.  Healing of mat mutations and control of mating type interconversion by the mating type locus in Saccharomyces cerevisiae. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[48]  D. Botstein,et al.  Recessive lethal amber suppressors in yeast. , 1975, Genetics.

[49]  Y. Nogi,et al.  The genetic system controlling homothallism in Saccharomyces yeasts. , 1974, Genetics.