Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.

[1]  V. V. Karasev,et al.  Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: Metal vapor homogeneous nucleation , 2006 .

[2]  P. Winkler,et al.  Homogeneous nucleation of n-nonane and n-propanol mixtures: a comparison of classical nucleation theory and experiments. , 2005, The Journal of chemical physics.

[3]  van Meh Rini Dongen,et al.  Homogeneous nucleation of water between 200 and 240 K: new wave tube data and estimation of the Tolman length. , 2005, The Journal of chemical physics.

[4]  Yoojeong Kim,et al.  Homogeneous nucleation of n-propanol, n-butanol, and n-pentanol in a supersonic nozzle. , 2005, The Journal of chemical physics.

[5]  J. Wölk,et al.  Homogeneous nucleation rates of 1-pentanol. , 2004, The Journal of chemical physics.

[6]  J. Wölk,et al.  Small angle neutron scattering from D2O–H2O nanodroplets and binary nucleation rates in a supersonic nozzle , 2003 .

[7]  N. Laulainen,et al.  Laboratory Measurement of Water Nucleation Using a Laminar Flow Tube Reactor , 2002 .

[8]  J. Schmitt,et al.  Homogeneous nucleation of n-pentanol measured in an expansion cloud chamber , 2002 .

[9]  R. Strey,et al.  Homogeneous Nucleation of H2O and D2O in Comparison: The Isotope Effect† , 2001 .

[10]  L. Bartell Tolman's δ, Surface Curvature, Compressibility Effects, and the Free Energy of Drops† , 2001 .

[11]  K. V. Brunt,et al.  The homogeneous nucleation of water , 2001 .

[12]  R. Strey,et al.  Homogeneous nucleation of n-pentanol and droplet growth: A quantitative comparison of experiment and theory , 2001 .

[13]  H. Lihavainen,et al.  Homogeneous nucleation of n-pentanol in a laminar flow diffusion chamber , 2001 .

[14]  P. Hopke,et al.  n-Pentanol–helium homogeneous nucleation rates , 2000 .

[15]  J. Katz,et al.  Role of the Model Dependent Translational Volume Scale in the Classical Theory of Nucleation , 1998 .

[16]  P. Debenedetti,et al.  Reversible work of formation of an embryo of a new phase within a uniform macroscopic mother phase , 1998 .

[17]  C. Luijten,et al.  Homogeneous nucleation rates for n-pentanol from expansion wave tube experiments , 1997 .

[18]  Y. Viisanen,et al.  Homogeneous nucleation rates for n‐pentanol in argon: Determination of the critical cluster size , 1996 .

[19]  I. Kusaka,et al.  Thermodynamic formulas of liquid phase nucleation from vapor in multicomponent systems , 1992 .

[20]  F. Peters,et al.  Nucleation and growth rates of homogeneously condensing water vapor in argon from shock tube experiments , 1989 .

[21]  J. Katz,et al.  Condensation of a supersaturated vapor. VIII. The homogeneous nucleation of n‐nonane , 1989 .

[22]  R. Strey,et al.  Homogeneous nucleation rates for n‐alcohol vapors measured in a two‐piston expansion chamber. , 1986 .

[23]  G. W. Adams,et al.  The homogeneous nucleation of nonane , 1984 .

[24]  R. Strey,et al.  Measurements of homogeneous nucleation rates for n‐nonane vapor using a two‐piston expansion chamber , 1984 .

[25]  Robert J. Anderson,et al.  Homogeneous nucleation rate measurements for water over a wide range of temperature and nucleation rate , 1983 .

[26]  K. Rademann,et al.  Metal‐Nonmetal Transition and Homogeneous Nucleation of Mercury Vapour , 1991 .

[27]  Takai,et al.  Curvature dependence of the interfacial tension in binary nucleation. , 1989, Physical review. A, General physics.