Temperature Variations Analysis for Condensed Matter Micro- and Nanoparticles Combustion Burning in Gaseous Oxidizing Media by DTM and BPES

Combustion process for iron particles burning in the gaseous oxidizing medium is investigated using the Boubaker polynomial expansion scheme (BPES) and the differential transformation method (DTM). Effects of thermal radiation from the external surface of burning particle and alterations of density of iron particle with temperature are considered. The solutions obtained using BPES technique and DTM are compared with those of the fourth-order Runge-Kutta numerical method. Results reveal that BPES is more accurate and reliable method than DTM. Also the effects of some physical parameters that appeared in mathematical section on temperature variations of particles as a function of time are studied.

[1]  M. Bidabadi,et al.  Time variation of combustion temperature and burning time of a single iron particle , 2013 .

[2]  C. E. Benouis,et al.  A New Guide to Thermally Optimized Doped Oxides Monolayer Spray-Grown Solar Cells: The Amlouk-Boubaker Optothermal Expansivity ψAB , 2011 .

[3]  M. Bidabadi,et al.  Dynamic behavior of particles across flame propagation through micro-iron dust cloud with thermal radiation effect , 2011 .

[4]  A. Barari,et al.  Numerical analysis of flow and heat transfer of a viscoelastic fluid over a stretching sheet , 2011 .

[5]  A. Milgram,et al.  The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem. , 2011, Journal of theoretical biology.

[6]  S. Goroshin,et al.  Modes of particle combustion in iron dust flames , 2011 .

[7]  H. Rahmanov A Solution to the non Linear Korteweg-De-Vries Equation in the Particular Case Dispersion-Adsorption Problem in Porous Media Using the Spectral Boubaker Polynomials Expansion Scheme (BPES) , 2011 .

[8]  A. S. Kumar An analytical solution to applied mathematics-related Love's equation using the Boubaker polynomials expansion scheme , 2010, J. Frankl. Inst..

[9]  M. Bidabadi,et al.  Modeling of laminar flame propagation through organic dust cloud with thermal radiation effect , 2010 .

[10]  M. Bidabadi,et al.  Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a micro-iron dust cloud. , 2010, Journal of hazardous materials.

[11]  Syed Tauseef Mohyud-Din,et al.  Analytical solutions to the pulsed Klein-Gordon equation using Modified Variational Iteration Method (MVIM) and Boubaker Polynomials Expansion Scheme (BPES) , 2010, Comput. Math. Appl..

[12]  A. S. Kumar,et al.  A Boubaker Polynomials Expansion Scheme Solution to Random Love ’ s Equation in the Case of a Rational Kernel , 2010 .

[13]  Maximilian F. Hasler,et al.  Variations on Euclid's Formula for Perfect Numbers , 2010 .

[14]  Paul Barry,et al.  Meixner-Type Results for Riordan Arrays and Associated Integer Sequences , 2010 .

[15]  M. Amlouk,et al.  A Boubaker polynomials expansion scheme (BPES)-related protocol for measuring sprayed thin films thermal characteristics , 2009 .

[16]  L. Barrallier,et al.  Experimental and theoretical cooling velocity profile inside laser welded metals using keyhole approximation and Boubaker polynomials expansion , 2009 .

[17]  D. Ganji,et al.  Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity , 2009 .

[18]  S. Fridjine,et al.  A NEW PARAMETER: AN ABACUS FOR OPTIMIZING PV–T HYBRID SOLAR DEVICE FUNCTIONAL MATERIALS USING THE BOUBAKER POLYNOMIALS EXPANSION SCHEME , 2009 .

[19]  A. Belhadj,et al.  Boubaker Polynomials Expansion Scheme-Related Heat Transfer Investigation Inside Keyhole Model , 2009 .

[20]  M. Amlouk,et al.  A study of sulfur/selenium substitution effects on physical and mechanical properties of vacuum-grown ZnS1−xSex compounds using Boubaker polynomials expansion scheme (BPES) , 2009 .

[21]  O. Awojoyogbe,et al.  Cut-off cooling velocity profiling inside a keyhole model using the Boubaker polynomials expansion scheme , 2009 .

[22]  Karem Boubaker,et al.  Morphological and thermal properties of β-SnS2 sprayed thin films using Boubaker polynomials expansion , 2009 .

[23]  M. Amlouk,et al.  The 3D Amlouk–Boubaker expansivity–energy gap–Vickers hardness abacus: A new tool for optimizing semiconductor thin film materials , 2009 .

[24]  Karem Boubaker,et al.  Heat transfer spray model: An improved theoretical thermal time-response to uniform layers deposit using Bessel and Boubaker polynomials , 2009 .

[25]  Jamel Bessrour,et al.  A dynamical model for investigation of A 3 point maximal spatial evolution during resistance spot welding using Boubaker polynomials , 2008 .

[26]  Taher Ghrib,et al.  INVESTIGATION OF THERMAL DIFFUSIVITY–MICROHARDNESS CORRELATION EXTENDED TO SURFACE-NITRURED STEEL USING BOUBAKER POLYNOMIALS EXPANSION , 2008 .

[27]  I. H. Abdel-Halim Hassan,et al.  Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems , 2008 .

[28]  Jin-hua Sun,et al.  Flame propagation in hybrid mixture of coal dust and methane , 2007 .

[29]  Fatma Ayaz,et al.  Solutions of the system of differential equations by differential transform method , 2004, Appl. Math. Comput..

[30]  Ming-Jyi Jang,et al.  Two-dimensional differential transform for partial differential equations , 2001, Appl. Math. Comput..

[31]  Cha'o-Kuang Chen,et al.  Solving partial differential equations by two-dimensional differential transform method , 1999, Appl. Math. Comput..