Regional chemoarchitecture of the brain of lungfishes based on calbindin D‐28K and calretinin immunohistochemistry

Lungfishes are the closest living relatives of land vertebrates, and their neuroanatomical organization is particularly relevant for deducing the neural traits that have been conserved, modified, or lost with the transition from fishes to land vertebrates. The immunohistochemical localization of calbindin (CB) and calretinin (CR) provides a powerful method for discerning segregated neuronal populations, fiber tracts, and neuropils and is here applied to the brains of Neoceratodus and Protopterus, representing the two extant orders of lungfishes. The results showed abundant cells containing these proteins in pallial and subpallial telencephalic regions, with particular distinct distribution in the basal ganglia, amygdaloid complex, and septum. Similarly, the distribution of CB and CR containing cells supports the division of the hypothalamus of lungfishes into neuromeric regions, as in tetrapods. The dense concentrations of CB and CR positive cells and fibers highlight the extent of the thalamus. As in other vertebrates, the optic tectum is characterized by numerous CB positive cells and fibers and smaller numbers of CR cells. The so‐called cerebellar nucleus contains abundant CB and CR cells with long ascending axons, which raises the possibility that it could be homologized to the secondary gustatory nucleus of other vertebrates. The corpus of the cerebellum is devoid of CB and CR and cells positive for both proteins are found in the cerebellar auricles and the octavolateralis nuclei. Comparison with other vertebrates reveals that lungfishes share most of their features of calcium binding protein distribution with amphibians, particularly with salamanders.

[1]  Jesús M. López,et al.  Immunohistochemical Localization of DARPP-32 in the Brain of Two Lungfishes: Further Assessment of Its Relationship with the Dopaminergic System , 2017, Brain, Behavior and Evolution.

[2]  F. Laberge,et al.  Efferent Axonal Projections of the Habenular Complex in the Fire-Bellied Toad Bombina orientalis , 2017, Brain, Behavior and Evolution.

[3]  Jesús M. López,et al.  Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates , 2017, The Journal of comparative neurology.

[4]  C. Wittmer,et al.  Epithelial crypts: A complex and enigmatic olfactory organ in African and South American lungfish (Lepidosireniformes, Dipnoi) , 2017, Journal of morphology.

[5]  E. Chernigovskaya,et al.  Selective specificity of calcium-binding proteins calbindin and calretinin expression in the magnocellular neurosecretory hypothalamic nuclei of tortoises and turtles , 2017, Doklady Biological Sciences.

[6]  M. Równiak The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones , 2017, Brain Structure and Function.

[7]  L. Puelles,et al.  Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis , 2017, The Journal of comparative neurology.

[8]  A. Robak,et al.  The ontogenetic development of neurons containing calcium-binding proteins in the septum of the guinea pig: Late onset of parvalbumin immunoreactivity versus calbindin and calretinin , 2017, Journal of Chemical Neuroanatomy.

[9]  R. Segev,et al.  The Brain of the Archerfish Toxotes chatareus: A Nissl-Based Neuroanatomical Atlas and Catecholaminergic/Cholinergic Systems , 2016, Front. Neuroanat..

[10]  A. Meyer,et al.  The Identification of the Closest Living Relative(s) of Tetrapods: Phylogenomic Lessons for Resolving Short Ancient Internodes. , 2016, Systematic biology.

[11]  Jesús M. López,et al.  Organization of the nitrergic neuronal system in the primitive bony fishes Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia) , 2016, The Journal of comparative neurology.

[12]  M. Schartl,et al.  The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land , 2016, Scientific Reports.

[13]  Terry. Grande,et al.  Fishes of the World: Nelson/Fishes of the World , 2016 .

[14]  N. Vesselkin,et al.  Distribution of calcium-binding proteins in the pigeon visual thalamic centers and related pretectal and mesencephalic nuclei. Phylogenetic and functional determinants , 2016, Brain Research.

[15]  P. Ahlberg,et al.  Brain – Endocast Relationship in the Australian Lungfish, Neoceratodus forsteri, Elucidated from Tomographic Data (Sarcopterygii: Dipnoi) , 2015, PloS one.

[16]  A. Jadhao,et al.  Calcium binding protein calretinin (29kD) localization in the forebrain of the cichlid fish: An immunohistochemical study. , 2015, General and comparative endocrinology.

[17]  R. Morona,et al.  Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis , 2015, Front. Neuroanat..

[18]  J. Rubenstein,et al.  A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model , 2015, Front. Neuroanat..

[19]  N. Moreno,et al.  Identification of Striatal and Pallidal Regions in the Subpallium of Anamniotes , 2014, Brain, Behavior and Evolution.

[20]  R. Anadón,et al.  Immunohistochemical distribution of calretinin and calbindin (D‐28k) in the brain of the cladistian Polypterus senegalus , 2013, The Journal of comparative neurology.

[21]  N. Moreno,et al.  Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development , 2013, Brain Structure and Function.

[22]  Sonja J. Prohaska,et al.  Analysis of the African coelacanth genome sheds light on tetrapod evolution , 2013, Nature.

[23]  G. Hauptmann,et al.  Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon , 2013, The Journal of comparative neurology.

[24]  C. Carr,et al.  Vestibular nuclei characterized by calcium-binding protein immunoreactivity and tract tracing in Gekko gecko , 2013, Hearing Research.

[25]  Lisa H. Kreiner,et al.  Calretinin Regulates Ca2+-dependent Inactivation and Facilitation of Cav2.1 Ca2+ Channels through a Direct Interaction with the α12.1 Subunit* , 2012, The Journal of Biological Chemistry.

[26]  R. Anadón,et al.  Immunohistochemical study of the distribution of calcium binding proteins in the brain of a chondrostean (Acipenser baeri) , 2012, The Journal of comparative neurology.

[27]  M. Zou,et al.  Basal Jawed Vertebrate Phylogenomics Using Transcriptomic Data from Solexa Sequencing , 2012, PloS one.

[28]  M. Concha,et al.  Evolutionary Plasticity of Habenular Asymmetry with a Conserved Efferent Connectivity Pattern , 2012, PloS one.

[29]  R. Northcutt,et al.  Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri , 2012, Brain Structure and Function.

[30]  Jesús M. López,et al.  Localization of Calbindin-D28k and Calretinin in the Brain of Dermophis Mexicanus (Amphibia: Gymnophiona) and Its Bearing on the Interpretation of Newly Recognized Neuroanatomical Regions , 2011, Brain, Behavior and Evolution.

[31]  L. Puelles,et al.  Embryonic genoarchitecture of the pretectum in Xenopus laevis: A conserved pattern in tetrapods , 2011, The Journal of comparative neurology.

[32]  R. Anadón,et al.  Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio) , 2011, The Journal of comparative neurology.

[33]  R. Northcutt,et al.  Immunohistochemical localization of calbindin D28k and calretinin in the retina of two lungfishes, Protopterus dolloi and Neoceratodus forsteri: Colocalization with choline acetyltransferase and tyrosine hydroxylase , 2011, Brain Research.

[34]  N. Moreno,et al.  The Non-Evaginated Secondary Prosencephalon of Vertebrates , 2010, Front. Neuroanat..

[35]  Jesús M. López,et al.  Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system , 2010, Journal of Chemical Neuroanatomy.

[36]  R. Northcutt The Central Nervous System of Lungfishes , 2010 .

[37]  R. Northcutt,et al.  Immunohistochemical Localization of Calbindin-D28k and Calretinin in the Spinal Cord of Lungfishes , 2010, Brain, Behavior and Evolution.

[38]  C. Carr,et al.  Calcium‐binding protein immunoreactivity characterizes the auditory system of Gekko gecko , 2010, The Journal of comparative neurology.

[39]  David K Welsh,et al.  Suprachiasmatic nucleus: cell autonomy and network properties. , 2010, Annual review of physiology.

[40]  R. Northcutt,et al.  Lungfishes, Like Tetrapods, Possess a Vomeronasal System , 2010, Front. Neuroanat..

[41]  B. Schwaller,et al.  LACK OF CALBINDIN-D28K ALTERS RESPONSE OF THE MURINE CIRCADIAN CLOCK TO LIGHT , 2010, Chronobiology international.

[42]  N. Moreno,et al.  Distribution of Orexin/Hypocretin Immunoreactivity in the Brain of the Lungfishes Protopterus dolloi and Neoceratodus forsteri , 2010, Brain, Behavior and Evolution.

[43]  T. Shimazoe,et al.  Circadian Trafficking of Calbindin-ir in Fibers of SCN Neurons , 2009, Journal of biological rhythms.

[44]  A. Camp,et al.  Calretinin: modulator of neuronal excitability. , 2009, The international journal of biochemistry & cell biology.

[45]  D. Hunt,et al.  The evolution of early vertebrate photoreceptors , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  R. Northcutt,et al.  An Immunohistochemical Approach to Lungfish Telencephalic Organization , 2009, Brain, Behavior and Evolution.

[47]  R. Morona,et al.  Immunohistochemical localization of calbindin‐D28k and calretinin in the brainstem of anuran and urodele amphibians , 2009, The Journal of comparative neurology.

[48]  R. Northcutt Phylogeny of nucleus medianus of the posterior tubercle in rayfinned fishes. , 2009, Integrative zoology.

[49]  R. Northcutt Telencephalic Organization in the Spotted African Lungfish, Protopterus dolloi: A New Cytological Model , 2009, Brain, Behavior and Evolution.

[50]  R. Anadón,et al.  Calretinin-immunoreactive systems in the cerebellum and cerebellum-related lateral-line medullary nuclei of an elasmobranch, Scyliorhinus canicula , 2009, Journal of Chemical Neuroanatomy.

[51]  R. Morona,et al.  Calbindin‐D28k and calretinin expression in the forebrain of anuran and urodele amphibians: Further support for newly identified subdivisions , 2008, The Journal of comparative neurology.

[52]  R. Anadón,et al.  Distribution of calretinin during development of the olfactory system in the brown trout, Salmo trutta fario: Comparison with other immunohistochemical markers , 2008, Journal of Chemical Neuroanatomy.

[53]  A. Csillag,et al.  The organisation of the basal ganglia in the domestic chick (Gallus domesticus): Anatomical localisation of DARPP-32 in relation to glutamate , 2008, Brain Research Bulletin.

[54]  S. Guirado,et al.  Development and adult organization of the lateral part of the bed nucleus of the stria terminalis in the chicken , 2008, Brain Research Bulletin.

[55]  G. Drouin,et al.  Molecular characterization and comparative localization of the mRNAs encoding two glutamic acid decarboxylases (GAD65 and GAD67) in the brain of the african lungfish, Protopterus annectens , 2008, The Journal of comparative neurology.

[56]  T. Finger,et al.  Calcium‐fluxing glutamate receptors associated with primary gustatory afferent terminals in goldfish (Carassius auratus) , 2008, The Journal of comparative neurology.

[57]  N. Moreno,et al.  Comparative analysis of calbindin D-28K and calretinin in the retina of anuran and urodele amphibians: Colocalization with choline acetyltransferase and tyrosine hydroxylase , 2007, Brain Research.

[58]  Donna M. Martin,et al.  Characterization of progenitor domains in the developing mouse thalamus , 2007, The Journal of comparative neurology.

[59]  C. Malz,et al.  Localization of calcium-binding protein (calretinin, 29kD) in the brain and pituitary gland of teleost fish: An immunohistochemical study , 2007, Neuroscience Research.

[60]  N. Moreno,et al.  Regionalization of the Telencephalon in Urodele Amphibians and Its Bearing on the Identification of the Amygdaloid Complex , 2007, Frontiers in neuroanatomy.

[61]  S. Scholpp,et al.  Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon , 2007, Development.

[62]  Agustín González,et al.  Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnio‐amniotic transition , 2007, Journal of anatomy.

[63]  J. Baizer,et al.  Neurochemically defined cell types in the claustrum of the cat , 2007, Brain Research.

[64]  Hartmut Schmidt,et al.  Spino‐dendritic cross‐talk in rodent Purkinje neurons mediated by endogenous Ca2+‐binding proteins , 2007, The Journal of physiology.

[65]  Jesús M. López,et al.  Immunohistochemical and hodological characterization of calbindin‐D28k‐containing neurons in the spinal cord of the turtle, Pseudemys scripta elegans , 2007, Microscopy research and technique.

[66]  L. P. Morin,et al.  Complex organization of mouse and rat suprachiasmatic nucleus , 2006, Neuroscience.

[67]  T. Finger,et al.  Co‐occurrence of calcium‐binding proteins and calcium‐permeable glutamate receptors in the primary gustatory nucleus of goldfish , 2006, The Journal of comparative neurology.

[68]  C. Jeon,et al.  Calcium-binding Protein Calretinin Immunoreactivity in the Dog Superior Colliculus , 2006, Acta histochemica et cytochemica.

[69]  L. Medina,et al.  Calcium‐binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium , 2006, The Journal of comparative neurology.

[70]  R. Anadón,et al.  Topography and connections of the telencephalon in a chondrostean, Acipenser baeri: An experimental study , 2006, The Journal of comparative neurology.

[71]  Jesús M. López,et al.  Calbindin-D28k and calretinin immunoreactivity in the spinal cord of the lizard Gekko gecko: Colocalization with choline acetyltransferase and nitric oxide synthase , 2006, Brain Research Bulletin.

[72]  R. Anadón,et al.  Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter‐synthesizing enzymes. II. Midbrain, hindbrain, and rostral spinal cord , 2006, The Journal of comparative neurology.

[73]  N. Moreno,et al.  Immunohistochemical localization of calbindin‐D28k and calretinin in the spinal cord of Xenopus laevis , 2006, The Journal of comparative neurology.

[74]  N. Moreno,et al.  The common organization of the amygdaloid complex in tetrapods: New concepts based on developmental, hodological and neurochemical data in anuran amphibians , 2006, Progress in Neurobiology.

[75]  R. Anadón,et al.  Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter‐synthesizing enzymes. I. Olfactory organ and forebrain , 2006, The Journal of comparative neurology.

[76]  R. Baker,et al.  Preservation of segmental hindbrain organization in adult frogs , 2006, The Journal of comparative neurology.

[77]  G. Paxinos,et al.  Cyto- and chemoarchitecture of the amygdala of a monotreme, Tachyglossus aculeatus (the short-beaked echidna) , 2005, Journal of Chemical Neuroanatomy.

[78]  S. Guirado,et al.  Distribution of GABA, calbindin and nitric oxide synthase in the developing chick entopallium , 2005, Brain Research Bulletin.

[79]  L. Puelles,et al.  Postulated boundaries and differential fate in the developing rostral hindbrain , 2005, Brain Research Reviews.

[80]  L. Medina,et al.  Development of neurons and fibers containing calcium binding proteins in the pallial amygdala of mouse, with special emphasis on those of the basolateral amygdalar complex , 2005, The Journal of comparative neurology.

[81]  J. Eilers,et al.  Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Masayoshi Tokita,et al.  Evolutionary history of African lungfish: a hypothesis from molecular phylogeny. , 2005, Molecular phylogenetics and evolution.

[83]  R. Mooney,et al.  Calcium‐binding proteins define interneurons in HVC of the zebra finch (Taeniopygia guttata) , 2005, The Journal of comparative neurology.

[84]  R. Anadón,et al.  Calretinin immunoreactivity in taste buds and afferent fibers of the grey mullet Chelon labrosus , 2005, Brain Research.

[85]  A. Meyer,et al.  Complete Mitochondrial Genome Sequences of the South American and the Australian Lungfish: Testing of the Phylogenetic Performance of Mitochondrial Data Sets for Phylogenetic Problems in Tetrapod Relationships , 2004, Journal of Molecular Evolution.

[86]  N. Vesselkin,et al.  Distribution of calcium-binding proteins in the central and peripheral regions of the turtle mesencephalic center torus semicircularis , 2004, Doklady Biological Sciences.

[87]  E. Vecino,et al.  Differential expression of calretinin in the developing and regenerating zebrafish visual system. , 2004, Histology and histopathology.

[88]  A. Csillag,et al.  Abundance and location of DARPP-32 in striato-tegmental circuits of domestic chicks , 2004, Journal of Chemical Neuroanatomy.

[89]  J. Klein,et al.  The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. , 2004, Molecular biology and evolution.

[90]  L. Medina,et al.  Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods , 2004, The Journal of comparative neurology.

[91]  Philippe Vernier,et al.  The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio , 2004, Brain Research.

[92]  M. Bentivoglio,et al.  The epithalamus of the developing and adult frog: calretinin expression and habenular asymmetry in Rana esculenta , 2004, Brain Research.

[93]  J. Wild,et al.  Definition and connections of the entopallium in the zebra finch (Taeniopygia guttata) , 2004, The Journal of comparative neurology.

[94]  R. Anadón,et al.  Distribution and development of calretinin‐like immunoreactivity in the telencephalon of the brown trout, Salmo trutta fario , 2003, The Journal of comparative neurology.

[95]  C. Jeon,et al.  Immunocytochemical localization of neurons containing the AMPA GluR2/3 subunit in the hamster visual cortex. , 2003, Molecules and cells.

[96]  R. Anadón,et al.  Experimental study of the connections of the gustatory system in the rainbow trout, Oncorhynchus mykiss , 2003, The Journal of comparative neurology.

[97]  K. Ashwell,et al.  Cyto- and chemoarchitecture of the hypothalamus of a wallaby (Macropus eugenii) with special emphasis on oxytocin and vasopressinergic neurons , 2003, Anatomy and Embryology.

[98]  Luis Puelles,et al.  Forebrain gene expression domains and the evolving prosomeric model , 2003, Trends in Neurosciences.

[99]  M. Halpern,et al.  Calbindin D28K immunoreactive neurons in vomeronasal organ and their projections to the accessory olfactory bulb in the rat , 2003, Brain Research.

[100]  L. Medina,et al.  Expression of the genes GAD67 and Distal‐less‐4 in the forebrain of Xenopus laevis confirms a common pattern in tetrapods , 2003, The Journal of comparative neurology.

[101]  A. Martínez-Marcos,et al.  Structure and function of the vomeronasal system: an update , 2003, Progress in Neurobiology.

[102]  W. Smeets,et al.  Immunohistochemical localization of DARPP-32 in the brain of the turtle, Pseudemys scripta elegans: further assessment of its relationship with dopaminergic systems in reptiles , 2003, Journal of Chemical Neuroanatomy.

[103]  Stephanie Clarke,et al.  Patterns of calcium‐binding proteins support parallel and hierarchical organization of human auditory areas , 2003, The European journal of neuroscience.

[104]  J. Kuźnicki,et al.  Calretinin and calbindin D28k have different domain organizations , 2003, Protein science : a publication of the Protein Society.

[105]  S. Schiffmann,et al.  ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice , 2002, The Cerebellum.

[106]  C. Jeon,et al.  Immunocytochemical localization of calretinin in the superficial layers of the cat superior colliculus , 2002, Neuroscience Research.

[107]  R. Leak,et al.  Suprachiasmatic nucleus organization , 2002, Cell and Tissue Research.

[108]  I. Stanford,et al.  Calbindin D-28k positive projection neurones and calretinin positive interneurones of the rat globus pallidus , 2002, Brain Research.

[109]  L. Medina,et al.  The telencephalon of the frog Xenopus based on calretinin immunostaining and gene expression patterns , 2002, Brain Research Bulletin.

[110]  M. Pombal,et al.  Immunocytochemical localization of calretinin in the olfactory system of the adult lamprey, Lampetra fluviatilis , 2002, Brain Research Bulletin.

[111]  L. Puelles,et al.  The avian griseum tectale: cytoarchitecture, NOS expression and neurogenesis , 2002, Brain Research Bulletin.

[112]  T. Arendt,et al.  Principles of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling , 2002, Journal of Chemical Neuroanatomy.

[113]  L. Medina,et al.  Organization of the mouse dorsal thalamus based on topology, calretinin immnunostaining, and gene expression , 2002, Brain Research Bulletin.

[114]  Hans Forssberg,et al.  Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[115]  A. Morel,et al.  Neurochemical organization of the human basal ganglia: Anatomofunctional territories defined by the distributions of calcium‐binding proteins and SMI‐32 , 2002, The Journal of comparative neurology.

[116]  Ricardo Gattass,et al.  Distribution of calbindin, parvalbumin and calretinin in the lateral geniculate nucleus and superior colliculus in Cebus apella monkeys , 2001, Journal of Chemical Neuroanatomy.

[117]  Stephen W. Wilson,et al.  Asymmetry in the epithalamus of vertebrates , 2001, Journal of anatomy.

[118]  W. Smeets,et al.  Immunohistochemical localization of DARPP‐32 in the brain of the lizard, Gekko gecko: Co‐occurrence with tyrosine hydroxylase , 2001, The Journal of comparative neurology.

[119]  H. Kolb,et al.  Localization of neurotransmitters and calcium binding proteins to neurons of salamander and mudpuppy retinas , 2001, Vision Research.

[120]  O. Marín,et al.  Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin , 2001, The Journal of comparative neurology.

[121]  R. Anadón,et al.  Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract‐tracing observations on the connections of the nuclei of the isthmus , 2000, The Journal of comparative neurology.

[122]  L. Puelles,et al.  Expression of calcium–binding proteins in the diencephalon of the lizard Psammodromus algirus , 2000, The Journal of comparative neurology.

[123]  A. Parent,et al.  Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease , 2000, Brain Research Reviews.

[124]  A. Pitkänen,et al.  Distribution of parvalbumin, calretinin, and calbindin‐D28k immunoreactivity in the rat amygdaloid complex and colocalization with γ‐aminobutyric acid , 2000, The Journal of comparative neurology.

[125]  R. Anadón,et al.  Calretinin expression in specific neuronal systems in the brain of an advanced teleost, the grey mullet (Chelon labrosus) , 2000, The Journal of comparative neurology.

[126]  J. Rubenstein,et al.  Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx‐2, Emx‐1, Nkx‐2.1, Pax‐6, and Tbr‐1 , 2000, The Journal of comparative neurology.

[127]  A. Goodchild,et al.  Calbindin‐immunoreactive neurons in the reticular formation of the rat brainstem: Catecholamine content and spinal projections , 2000, The Journal of comparative neurology.

[128]  S. Amir,et al.  Calbindin-D28k immunoreactivity in the suprachiasmatic nucleus and the circadian response to constant light in the rat , 2000, Neuroscience.

[129]  L. Puelles,et al.  Cytoarchitectonic subdivisions in the subtectal midbrain of the lizard Gallotia galloti , 2000, Journal of neurocytology.

[130]  M. Kondo,et al.  A high GluR1 : GluR2 expression ratio is correlated with expression of Ca2+‐binding proteins in rat forebrain neurons , 2000, European Journal of Neuroscience.

[131]  R. Faull,et al.  The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus , 2000, Journal of Chemical Neuroanatomy.

[132]  R. Anadón,et al.  Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula) , 2000, The Journal of comparative neurology.

[133]  R. Silver,et al.  Retinal Innervation of Calbindin-D28K Cells in the Hamster Suprachiasmatic Nucleus: Ultrastructural Characterization , 2000, Journal of biological rhythms.

[134]  L. Puelles,et al.  Patterns of calretinin, calbindin, and tyrosine‐hydroxylase expression are consistent with the prosomeric map of the frog diencephalon , 2000, The Journal of comparative neurology.

[135]  L. Puelles,et al.  Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, nissl stain, and ancillary markers , 1999, The Journal of comparative neurology.

[136]  R. Silver,et al.  Calbindin expression in the hamster SCN is influenced by circadian genotype and by photic conditions. , 1999, Neuroreport.

[137]  Arai,et al.  Calbindin D28k and calretinin in oxytocin and vasopressin neurons of the rat supraoptic nucleus.A triple-labeling immunofluorescence study , 1999, Cell and tissue research.

[138]  D. Necchi,et al.  Distribution of calretinin-like immunoreactivity in the brain of Rana esculenta , 1999, Journal of Chemical Neuroanatomy.

[139]  M. Pritz,et al.  Calcium Binding Protein Immunoreactivity in Nucleus Rotundus in a Reptile, Caiman crocodilus , 1999, Brain, Behavior and Evolution.

[140]  E. Senba,et al.  Electrophysiological and morphological characterization of cytochemically-defined neurons in the caudal nucleus of tractus solitarius of the rat , 1999, Neuroscience.

[141]  S. Guirado,et al.  GABAergic cell types in the lizard hippocampus. , 1999, European journal of morphology.

[142]  S. Guirado,et al.  Calbindin‐D28k in cortical regions of the lizard Psammodromus algirus , 1999, The Journal of comparative neurology.

[143]  A. Gona,et al.  Calbindin Immunoreactivity in the Auricular Lobe and Interauricular Granular Band of the Cerebellum in Bullfrogs , 1998, Brain, Behavior and Evolution.

[144]  A. Reiner,et al.  Immunohistochemical localization of DARPP32 in striatal projection neurons and striatal interneurons in pigeons , 1998, Journal of Chemical Neuroanatomy.

[145]  M. Bellomo,et al.  AMPA receptor subunits are differentially expressed in parvalbumin‐ and calretinin‐positive neurons of the rat hippocampus , 1998, The European journal of neuroscience.

[146]  A. Parent,et al.  Chemical phenotype of calretinin interneurons in the human striatum , 1998, Synapse.

[147]  Paul Greengard,et al.  Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen , 1998, Brain Research.

[148]  A. Parent,et al.  Distribution of calbindin D-28k and parvalbumin neurons and fibers in the rat basal ganglia , 1998, Brain Research Bulletin.

[149]  I. Cobos,et al.  Calretinin in pretecto‐ and olivocerebellar projections in the chick: Immunohistochemical and experimental study , 1998, The Journal of comparative neurology.

[150]  Tamás F. Freund,et al.  Dual projection from the medial septum to the supramammillary nucleus in the rat , 1998, Brain Research Bulletin.

[151]  J. G. Briñón,et al.  Co-localization of calretinin and parvalbumin with nicotinamide adenine dinucleotide phosphate-diaphorase in tench Mauthner cells , 1998, Neuroscience Letters.

[152]  A. Gona,et al.  Calbindin Immunoreactivity in Purkinje Cells of the Bullfrog Cerebellum during Thyroxine-Induced Metamorphosis , 1998, Brain, Behavior and Evolution.

[153]  J. Albert,et al.  Telencephalic ascending gustatory system in a cichlid fish, Oreochromis (Tilapia) niloticus , 1998, The Journal of comparative neurology.

[154]  A. Parent,et al.  Calcium-binding proteins in primate cerebellum , 1998, Neuroscience Research.

[155]  B. Völgyi,et al.  Calretinin-immunoreactive elements in the retina and optic tectum of the frog, Rana esculenta , 1998, Brain Research.

[156]  A. Pastor,et al.  Localization of parvalbumin, calretinin, and calbindin D‐28k in identified extraocular motoneurons and internuclear neurons of the cat , 1998, The Journal of comparative neurology.

[157]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[158]  A. Parent,et al.  Distribution of calretinin, calbindin-D28k and parvalbumin in the hypothalamus of the squirrel monkey , 1997, Journal of Chemical Neuroanatomy.

[159]  A. Graybiel,et al.  Neurochemical architecture of the human striatum , 1997, The Journal of comparative neurology.

[160]  S. Guirado,et al.  Calretinin immunoreactivity in the cerebral cortex of the lizard Psammodromus algirus: A light and electron microscopic study , 1997, The Journal of comparative neurology.

[161]  J. G. Briñón,et al.  Calretinin immunoreactivity in the developing olfactory system of the rainbow trout. , 1997, Brain research. Developmental brain research.

[162]  J Somogyi,et al.  Distribution of calretinin-containing neurons relative to other neurochemically-identified cell types in the medial septum of the rat , 1997, Neuroscience.

[163]  W. Smeets,et al.  Basal ganglia organization in amphibians: Catecholaminergic innervation of the striatum and the nucleus accumbens , 1997, The Journal of comparative neurology.

[164]  H. Soininen,et al.  Calbindin-D28k-immunoreactive cells and fibres in the human amygdaloid complex , 1996, Neuroscience.

[165]  A. Parent,et al.  Calcium-binding proteins in primate basal ganglia , 1996, Neuroscience Research.

[166]  G. Tseng,et al.  Compartmentalization of calbindin and parvalbumin in different parts of rat rubrospinal neurons , 1996, Neuroscience.

[167]  T. Finger,et al.  Secondary connections of the dorsal and ventral facial lobes in a teleost fish, the rockling (Ciliata mustela) , 1996, The Journal of comparative neurology.

[168]  G. Dahlfors,et al.  Differential distribution of calcium-binding proteins in the dorsal column nuclei of rats: a combined immunohistochemical and retrograde tract tracing study , 1996, Neuroscience.

[169]  T. Finger,et al.  Axonal projection patterns of neurons in the secondary gustatory nucleus of channel catfish , 1996, The Journal of comparative neurology.

[170]  A. Reiner,et al.  Calretinin is largely localized to a unique population of striatal interneurons in rats , 1996, Brain Research.

[171]  A. Parent,et al.  Calretinin as a marker of specific neuronal subsets in primate substantia nigra and subthalamic nucleus , 1996, Brain Research.

[172]  C. Cusick,et al.  Neurochemical subdivisions of the inferior pulvinar in macaque monkeys , 1995, The Journal of comparative neurology.

[173]  A. Parent,et al.  Heterogeneous distribution of neurons containing calbindin D-28k and/or parvalbumin in the rat red nucleus , 1995, Brain Research.

[174]  J. G. Briñón,et al.  Calretinin-like immunoreactivity in the optic tectum of the tench (Tinca tinca L.) , 1995, Brain Research.

[175]  D. Jacobowitz,et al.  Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus , 1994, Brain Research Bulletin.

[176]  M. Molinari,et al.  Chemical Compartmentation and Relationships between Calcium‐binding Protein Immunoreactivity and Layer‐specific Cortical and Caudate‐projecting Cells in the Anterior Intralaminar Nuclei of the Cat , 1994, The European journal of neuroscience.

[177]  L. Puelles,et al.  New subdivision schema for the avian torus semicircularis: Neurochemical maps in the chick , 1994, The Journal of comparative neurology.

[178]  B. D. Bennett,et al.  Characterization of calretinin-immunoreactive structures in the striatum of the rat , 1993, Brain Research.

[179]  J. T. Fujii,et al.  Calcium-binding proteins in the chick Edinger Westphal nucleus , 1993, Brain Research.

[180]  C. Andressen,et al.  Calcium-binding proteins: selective markers of nerve cells , 1993, Cell and Tissue Research.

[181]  J. Rogers,et al.  Calretinin and calbindin-D28k in rat brain: Patterns of partial co-localization , 1992, Neuroscience.

[182]  D. Jacobowitz,et al.  Calretinin distribution in the thalamus of the rat: Immunohistochemical and in situ hybridization histochemical analyses , 1992, Neuroscience.

[183]  T. Freund,et al.  Distribution of GABAergic interneurons immunoreactive for calretinin, calbindin D28K, and parvalbumin in the cerebral cortex of the lizard Podarcis hispanica , 1992, The Journal of comparative neurology.

[184]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[185]  J. Rogers,et al.  Calretinin in rat brain: An immunohistochemical study , 1992, Neuroscience.

[186]  L. V. Van Eldik,et al.  Calmodulin and calbindin localization in retina from six vertebrate species , 1991, The Journal of comparative neurology.

[187]  D. Jacobowitz,et al.  Immunohistochemical localization of calretinin in the rat hindbrain , 1991, The Journal of comparative neurology.

[188]  M. Pritz,et al.  Calcium binding protein immunoreactivity in a reptilian thalamic reticular nucleus , 1991, Brain Research.

[189]  D. Jacobowitz,et al.  Immunocytochemical localization of calretinin in the forebrain of the rat , 1991, The Journal of comparative neurology.

[190]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[191]  E. G. Jones,et al.  Differential Calcium Binding Protein Immunoreactivity Distinguishes Classes of Relay Neurons in Monkey Thalamic Nuclei , 1989, The European journal of neuroscience.

[192]  S. Christakos,et al.  Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. , 1989, Endocrine reviews.

[193]  C. Gerfen,et al.  Calcium binding protein in the basal ganglia system of a non-mammalian vertebrate: an immunohistochemical study in the reptileCaiman crocodilus , 1988, Brain Research.

[194]  M. Parmentier,et al.  Calbindin in vertebrate classes: immunohistochemical localization and Western blot analysis. , 1987, General and comparative endocrinology.

[195]  R. Northcutt,et al.  An immunohistochemical study of the telencephalon of the african lungfish, Protopterus annectens , 1987, The Journal of comparative neurology.

[196]  L. Orci,et al.  Selective localization of calcium-binding protein in human brainstem, cerebellum and spinal cord , 1986, Brain Research.

[197]  R. Northcutt,et al.  The origins of descending spinal projections in lepidosirenid lungfishes , 1985, The Journal of comparative neurology.

[198]  L. Orci,et al.  Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system , 1984, Brain Research.

[199]  L. Garcia-Segura,et al.  Specific neurons in chick central nervous system stain with an antibody against chick intestinal vitamin D-dependent calcium-binding protein , 1981, Brain Research.

[200]  J. Adams Heavy metal intensification of DAB-based HRP reaction product. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[201]  R. Northcutt Retinal projections in the australian lungfish , 1980, Brain Research.

[202]  T. Finger Gustatory pathways in the bullhead catfish. II. Facial lobe connections , 1978, The Journal of comparative neurology.

[203]  R. Northcutt Retinofugal projections in the lepidosirenid lungfishes , 1977, The Journal of comparative neurology.

[204]  I. Grofová,et al.  Commissural projection from the nuclei of termination of the 8th cranial nerve in the toad. , 1972, Brain research.

[205]  M. Hines The Comparative Anatomy of the Nervous System of Vertebrates Including Man , 1938 .

[206]  Nils Holmgren,et al.  CONTRIBUTION TO THE MORPHOLOGY OF THE BRAIN OF CERATODUS , 1925 .

[207]  N. Moreno,et al.  The Organization of the Central Nervous System of Amphibians , 2020, Evolutionary Neuroscience.

[208]  N. Moreno,et al.  The Organization of the Central Nervous System of Lungfishes: An Immunohistochemical Approach , 2017 .

[209]  R. Northcutt,et al.  Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinopterygian fish, the senegal bichir Polypterus senegalus , 2013, The Journal of comparative neurology.

[210]  R. Morona,et al.  Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development , 2013, The Journal of comparative neurology.

[211]  Jesús M. López,et al.  Comparative analysis of the serotonergic systems in the CNS of two lungfishes, Protopterus dolloi and Neoceratodus forsteri , 2013, Brain Structure and Function.

[212]  R. Northcutt,et al.  BRAIN AND NERVOUS SYSTEM | Functional Morphology of the Brains of Sarcopterygian Fishes: Lungfishes and Latimeria , 2011 .

[213]  N. Moreno,et al.  Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers , 2010, The Journal of comparative neurology.

[214]  Lisa H. Kreiner,et al.  Compensatory regulation of Cav2.1 Ca2+ channels in cerebellar Purkinje neurons lacking parvalbumin and calbindin D-28k. , 2010, Journal of neurophysiology.

[215]  M. Braford Stalking the everted telencephalon: comparisons of forebrain organization in basal ray-finned fishes and teleosts. , 2009, Brain, behavior and evolution.

[216]  T. Finger,et al.  Gustatory Pathways in Fish and Mammals , 2008 .

[217]  B. Schwaller The continuing disappearance of “pure” Ca2+ buffers , 2008, Cellular and Molecular Life Sciences.

[218]  Bernd Fritzsch,et al.  Evolution of the Deuterostome Central Nervous System: An Intercalation of Developmental Patterning Processes with Cellular Specification Processes , 2007 .

[219]  R. Anadón,et al.  Asymmetric distribution of calbindin-D28K in the ganglia habenulae of an elasmobranch fish , 2004, Anatomy and Embryology.

[220]  H. John Calretinin : A Gene for a Novel Calcium-binding Protein Expressed Principally in Neurons , 2003 .

[221]  M. Pombal,et al.  Calbindin and calretinin immunoreactivities identify different types of neurons in the adult lamprey spinal cord , 2003, The Journal of comparative neurology.

[222]  C. Verney,et al.  Expression of calbindin D28K in the dopaminergic mesotelencephalic system in embryonic and fetal human brain , 2001, The Journal of comparative neurology.

[223]  C. A. Mccormick,et al.  Anatomy of the Central Auditory Pathways of Fish and Amphibians , 1999 .

[224]  J. G. Briñón,et al.  Calcium-binding proteins in the periglomerular region of typical and typical olfactory glomeruli. , 1997, Brain research.

[225]  G. Halliday,et al.  Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans , 1996, The Journal of comparative neurology.

[226]  L. Puelles,et al.  A segmental map of architectonic subdivisions in the diencephalon of the frog Rana perezi: acetylcholinesterase-histochemical observations. , 1996, Brain, behavior and evolution.

[227]  H. Soininen,et al.  Calretinin-immunoreactive cells and fibers in the human amygdaloid complex. , 1996, The Journal of comparative neurology.

[228]  R. Baker,et al.  Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. , 1993, Acta anatomica.

[229]  C. V. von Bartheld Oculomotor and sensory mesencephalic trigeminal neurons in lungfishes: phylogenetic implications. , 1992, Brain, behavior and evolution.

[230]  J. Rogers,et al.  Calretinin and other CaBPs in the nervous system. , 1990, Advances in experimental medicine and biology.

[231]  M. Parmentier,et al.  Structure of the human cDNAs and genes coding for calbindin D28K and calretinin. , 1990, Advances in experimental medicine and biology.

[232]  K. Braun,et al.  Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. , 1990, Progress in histochemistry and cytochemistry.

[233]  R. Anadón,et al.  Immunohistochemical localization of calbindin-D28K in the brain of a cartilaginous fish, the dogfish (Scyliorhinus canicula L.). , 1990, Acta anatomica.

[234]  C. Gerfen,et al.  Calcium binding protein in the basal ganglia system of a non-mammalian vertebrate: an immunohistochemical study in the reptile Caiman crocodilus. , 1988, Brain research.

[235]  N. Montgomery Projections of the vestibular and cerebellar nuclei in Rana pipiens. , 1988, Brain, behavior and evolution.

[236]  A. Kemp The biology of the australian lungfish, Neoceratodus forsteri (krefft 1870) , 1986 .

[237]  R. Molnar,et al.  Neoceratodus forsteri from the Lower Cretaceous of New South Wales, Australia , 1981 .

[238]  P. Clairambault,et al.  [Primary visual centers in Protopterus dolloi Boulenger]. , 1975, Journal fur Hirnforschung.

[239]  G. Pinganaud,et al.  Architectural Pattern of the Diencephalon and Mesencephalon of the African Lungfish Protopterus Dolloi , 1974 .

[240]  E. Capanna,et al.  Suggestions for a Revision of the Cytoarchitectonics of the Telencephalon of Protopterus, Protopterus Annectens (OWEN) , 1973 .