A general approach to sensitivity analysis of fluid–structure interactions

Abstract This paper presents a general monolithic formulation for sensitivity analysis of the steady-state interaction of a viscous incompressible flow with an elastic structure undergoing large displacements (geometric nonlinearities). The problem is solved in a direct implicit manner using a Newton–Raphson adaptive finite element method. A pseudo-solid formulation is used to manage the deformations of the fluid domain. The formulation uses fluid velocity, pressure, and pseudo-solid displacements as unknowns in the flow domain and displacements in the structural components. The adaptive formulation is verified on a problem with a closed-form solution. It is then applied to sensitivity analysis of an elastic cylinder placed in a uniform flow. Sensitivities are used for fast evaluation of nearby problems (i.e. for nearby values of the parameters) and for cascading uncertainty through the Computational Fluid Dynamics/Computational Structural Dynamics code to yield uncertainty estimates of the cylinder shape.

[1]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[2]  Céline Grandmont,et al.  Existence for a Three-Dimensional Steady State Fluid-Structure Interaction Problem , 2002 .

[3]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[4]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[5]  Erik Lund,et al.  Shape Sensitivity Analysis of Strongly Coupled Fluid-Structure Interaction Problems , 2000 .

[6]  Eugenio Oñate,et al.  A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation , 2001 .

[7]  B. Desjardins,et al.  On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .

[8]  J. Burns,et al.  A PDE Sensitivity Equation Method for Optimal Aerodynamic Design , 1997 .

[9]  Earl H. Dowell,et al.  Modeling of Fluid-Structure Interaction , 2001 .

[10]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[11]  Erik Lund,et al.  Shape design optimization of steady fluid-structure interaction problems with large displacements , 2001 .

[12]  G. Dhatt,et al.  Une présentation de la méthode des éléments finis , 1984 .

[13]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[14]  P. Germain Mécanique des milieux continus , 1962 .

[15]  Edward J. Haug,et al.  Design Sensitivity Analysis of Structural Systems , 1986 .

[16]  Dominique Pelletier Adaptive finite element computations of complex flows , 1999 .

[17]  W. K. Anderson,et al.  Al A A-2001-0596 Recent Improvements in Aerodynamic Design Optimization On Unstructured Meshes , 2001 .

[18]  Gabriel Bugeda,et al.  A simple method for automatic update of finite element meshes , 2000 .

[19]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[20]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[21]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[22]  Omar Ghattas,et al.  Domain Decomposition Methods for Sensitivity Analysis of a Nonlinear Aeroelasticity Problem , 1998 .

[23]  D. Pelletier,et al.  A Second-order sensitivity equation method for laminar flow , 2005 .

[24]  M. Heil Stokes flow in an elastic tube—a large-displacement fluid-structure interaction problem , 1998 .

[25]  Omar Ghattas,et al.  A variational finite element method for stationary nonlinear fluid-solid interaction , 1995 .

[26]  E. Lund,et al.  Shape design optimization of stationary fluid-structure interaction problems with large displacements and turbulence , 2003 .

[27]  Investigation of sensitivity analysis for fluid-structure interaction systems , 2001 .

[28]  Rekha Ranjana Rao,et al.  A Newton-Raphson Pseudo-Solid Domain Mapping Technique for Free and Moving Boundary Problems , 1996 .

[29]  H. Schlichting Boundary Layer Theory , 1955 .

[30]  Stephane Etienne,et al.  A Monolithic Formulation for Steady-State Fluid-Structure Interaction Problems , 2004 .

[31]  J. Borggaard,et al.  Application of a sensitivity equation method to the k–ε model of turbulence , 2007 .