One-step optical trinary signed-digit arithmetic using redundant bit representations

A simple one-step fully parallel trinary signed-digit arithmetic is proposed for parallel optical computing. This technique performs multidigit carry-free addition and borrow-free subtraction in constant time. The trinary signed-digit arithmetic operations are based on redundant bit representation of the digits. Optical implementation of the proposed arithmetic can be carried out using correlation or matrix multiplication based schemes. An efficient matrix multiplication based optical implementation that employs a fixed number of minterms for any operand length is developed. It is shown that only 30 minterms (less than recently reported techniques) are enough for implementing the one-step trinary addition and subtraction.

[1]  A K Cherri Symmetrically recoded modified signed-digit optical addition and subtraction. , 1994, Applied optics.

[2]  N. I. Khachab,et al.  Canonical quaternary signed-digit arithmetic using optoelectronics symbolic substitution , 1996 .

[3]  Y Li,et al.  Parallel modified signed-digit arithmetic using an optoelectronic shared content-addressable-memory processor. , 1994, Applied optics.

[4]  Dhabaleswar K. Panda,et al.  High-radix symbolic substitution and superposition techniques for optical matrix algebraic computations , 1992 .

[5]  M Itoh,et al.  Modified signed-digit arithmetic based on redundant bit representation. , 1994, Applied optics.

[6]  J W Goodman,et al.  Optical computation using residue arithmetic. , 1979, Applied optics.

[7]  Y Li,et al.  Conditional symbolic modified signed-digit arithmetic using optical content-addressable memory logic elements. , 1987, Applied optics.

[8]  M A Karim,et al.  Modified-signed digit arithmetic using an efficient symbolic substitution. , 1988, Applied optics.

[9]  Annalisa Massini,et al.  High efficiency redundant binary number representations for parallel arithmetic on optical computers , 1994 .

[10]  Mohammad S. Alam,et al.  Symmetrically recoded quaternary signed‐digit arithmetic using a shared content‐addressable memory , 1996 .

[11]  T K Gaylord,et al.  Logical minimization of multilevel coded functions. , 1986, Applied optics.

[12]  Karl-Heinz Brenner,et al.  Digital optical computing with symbolic substitution. , 1986 .

[13]  T B Henderson,et al.  Modified signed-digit addition and subtraction using optical symbolic substitution. , 1986, Applied optics.

[14]  A. Avizeinis,et al.  Signed Digit Number Representations for Fast Parallel Arithmetic , 1961 .

[15]  Richard I. Tanaka,et al.  Residue arithmetic and its applications to computer technology , 1967 .

[16]  Everett L. Johnson,et al.  Digital design: a pragmatic approach , 1987 .

[17]  Kai Hwang,et al.  Computer arithmetic: Principles, architecture, and design , 1979 .

[18]  M S Alam Parallel optical computing using recoded trinary signed-digit numbers. , 1994, Applied optics.

[19]  Kai Hwang,et al.  Optical Multiplication And Division Using Modified-Signed-Digit Symbolic Substitution , 1989 .

[20]  M A Karim,et al.  Optical processing based on conditional higher-order trinary modified signed-digit symbolic substitution. , 1992, Applied optics.

[21]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[22]  Y Li,et al.  Content-addressable-memory-based single-stage optical modified-signed-digit arithmetic. , 1989, Optics letters.

[23]  Susamma Barua Single-stage optical adder/subtractor , 1991 .

[24]  Thomas K. Gaylord,et al.  Truth-table look-up processing: number representation, multilevel coding, and logical minimization , 1986 .

[25]  Stanley L. Hurst,et al.  Multiple-valued threshold logic: its status and its realization , 1986 .

[26]  A A Awwal Recoded signed-digit binary addition-subtraction using opto-electronic symbolic substitution. , 1992, Applied optics.

[27]  A P Goutzoulis,et al.  Optical processing with residue LED/LD lookup tables. , 1988, Applied optics.