Statistical Multiplexing Based R F H-OFDMA System for Improving Downlink User Capacity

We propose a random frequency hopping orthogonal frequency division multiple access (RFH-OFDMA) system based on statistical multiplexing for improving downlink user capacity. User capacity is defined as the maximum number of users served with a given basic data-rate in a cell. We compare the downlink user capacity of the proposed RFH-OFDMA system with that of the conventional frequency hopping OFDMA (FH-OFDMA) systems in the worst case where all users are located at the cell boundary. User capacity is limited by either the number of subcarriers or other-cell interference (OCI). Simulation results show that the proposed RFH-OFDMA system can accommodate 262 users in a 3-sectored cell, while the conventional FH-OFDMA systems can accommodate 51 users, when the user channel activity and the required Eb/I0 are 0.1 and 6 dB, respectively, and all users are assumed to be located at the cell boundary.