A Stefan problem on an evolving surface

We formulate a Stefan problem on an evolving hypersurface and study the well posedness of weak solutions given L1 data. To do this, we first develop function spaces and results to handle equations on evolving surfaces in order to give a natural treatment of the problem. Then, we consider the existence of solutions for data; this is done by regularization of the nonlinearity. The regularized problem is solved by a fixed point theorem and then uniform estimates are obtained in order to pass to the limit. By using a duality method, we show continuous dependence, which allows us to extend the results to L1 data.

[1]  C. M. Elliott,et al.  Weak and variational methods for moving boundary problems , 1982 .

[2]  Lambertus A. Peletier,et al.  The Stefan problem with heating: appearance and disappearance of a mushy region , 1986 .

[3]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[4]  A. M. Meirmanov,et al.  The Stefan Problem , 1992 .

[5]  Dumitru Motreanu,et al.  Nonsmooth Variational Problems and Their Inequalities , 2007 .

[6]  Charles M. Elliott,et al.  On some linear parabolic PDEs on moving hypersurfaces , 2014, 1412.1624.

[7]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[8]  J. L. Webb OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .

[9]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[10]  Alessio Porretta,et al.  Stefan problems with nonlinear diffusion and convection , 2005 .

[11]  J. Carifio,et al.  Nonlinear Analysis , 1995 .

[12]  J. Rodrigues Variational methods in the stefan problem , 1994 .

[13]  Avner Friedman,et al.  The Stefan problem in several space variables , 1968 .

[14]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[15]  Dumitru Motreanu,et al.  Nonsmooth Variational Problems and Their Inequalities: Comparison Principles and Applications , 2010 .

[16]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[17]  A. Friedman Variational principles and free-boundary problems , 1982 .

[18]  On a Darcy–Stefan Problem arising in freezing and thawing of saturated porous media , 1999 .

[19]  G. Wessolek,et al.  TECHNISCHE UNIVERSITÄT BERLIN , 2006 .

[20]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[21]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[22]  Franck Boyer,et al.  Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models , 2012 .

[23]  M. Vierling,et al.  Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control – theory and numerical realization , 2014 .

[24]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[25]  Charles M. Elliott,et al.  An abstract framework for parabolic PDEs on evolving spaces , 2014, 1403.4500.