Multi-scale Feature Spaces for Shape Processing and Analysis

In digital geometry processing and shape modeling, the Laplace-Beltrami and the heat diffusion operator, together with the corresponding Laplacian eigenmaps, harmonic and geometry-aware functions, have been used in several applications, which range from surface parameterization, deformation, and compression to segmentation, clustering, and comparison. Using the linear FEM approximation of the Laplace-Beltrami operator, we derive a discrete heat kernel that is linear, stable to an irregular sampling density of the input surface, and scale covariant. With respect to previous work, this last property makes the kernel particularly suitable for shape analysis and comparison; in fact, local and global changes of the surface correspond to a re-scaling of the time parameter without affecting its spectral component. Finally, we study the scale spaces that are induced by the proposed heat kernel and exploited to provide a multi-scale approximation of scalar functions defined on 3D shapes.

[1]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[2]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[3]  Hao Zhang,et al.  Mesh Segmentation via Recursive and Visually Salient Spectral Cuts , 2005 .

[4]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[5]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[6]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[7]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[8]  Daniel Cohen-Or,et al.  Geometry-aware bases for shape approximation , 2005, IEEE Transactions on Visualization and Computer Graphics.

[9]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[10]  Yehuda Koren,et al.  On Spectral Graph Drawing , 2003, COCOON.

[11]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[12]  Niklas Peinecke,et al.  Laplace spectra as fingerprints for image recognition , 2007, Comput. Aided Des..

[13]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[14]  Kun Zhou,et al.  Iso-charts: stretch-driven mesh parameterization using spectral analysis , 2004, SGP '04.

[15]  Yusu Wang,et al.  Eurographics Symposium on Geometry Processing 2009 Approximating Gradients for Meshes and Point Clouds via Diffusion Metric , 2022 .

[16]  Giuseppe Patanè,et al.  Computing smooth approximations of scalar functions with constraints , 2009, Comput. Graph..

[17]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[18]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[19]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[20]  Iasonas Kokkinos,et al.  SHREC 2010: robust large-scale shape retrieval benchmark , 2010 .

[21]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[22]  Ryutarou Ohbuchi,et al.  A Frequency‐Domain Approach to Watermarking 3D Shapes , 2002, Comput. Graph. Forum.

[23]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[24]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[25]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[26]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[27]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[28]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[29]  Hao Zhang,et al.  A spectral approach to shape-based retrieval of articulated 3D models , 2007, Comput. Aided Des..

[30]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[31]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[32]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[33]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[34]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[35]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[36]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[37]  Hao Zhang,et al.  Spectral Methods for Mesh Processing and Analysis , 2007, Eurographics.

[38]  Hao Zhang,et al.  Butterworth filtering and implicit fairing of irregular meshes , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[39]  Ryutarou Ohbuchi,et al.  Watermarking 3D Polygonal Meshes in the Mesh Spectral Domain , 2001, Graphics Interface.

[40]  T. Möller,et al.  An Investigation of the Spectral Robustness of Mesh Laplacians , 2005 .

[41]  O. Sorkine Differential Representations for Mesh Processing , 2006 .

[42]  Jean-Laurent Mallet,et al.  Discrete smooth interpolation , 1989, TOGS.

[43]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[44]  Marc Alexa,et al.  Laplacian mesh optimization , 2006, GRAPHITE '06.

[45]  Luiz Velho,et al.  A Hierarchical Segmentation of Articulated Bodies , 2008, Comput. Graph. Forum.

[46]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[47]  Ronald R. Coifman,et al.  Data Fusion and Multicue Data Matching by Diffusion Maps , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Valerio Pascucci,et al.  Persistence-sensitive simplification functions on 2-manifolds , 2006, SCG '06.

[49]  Jarek Rossignac,et al.  GeoFilter: Geometric Selection of Mesh Filter Parameters , 2005, Comput. Graph. Forum.

[50]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[51]  A. Bronstein,et al.  Analysis of diffusion geometry methods for shape recognition , 2009 .

[52]  Martha Elizabeth Shenton,et al.  Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis , 2009, Comput. Aided Des..

[53]  Hao Zhang,et al.  Mesh Segmentation via Spectral Embedding and Contour Analysis , 2007, Comput. Graph. Forum.