Eigenvalues of the Wentzell-Laplace Operator and of the Fourth Order Steklov Problems

We prove a sharp upper bound and a lower bound for the first nonzero eigenvalue of the Wentzell-Laplace operator on compact manifolds with boundary and an isoperimetric inequality for the same eigenvalue in the case where the manifold is a bounded domain in a Euclidean space. We study some fourth order Stekolv problems and obtain isoperimetric upper bound for the first eigenvalue of them. We also find all the eigenvalues and eigenfunctions for two kind of fourth order Stekolv problems on a Euclidean ball.

[1]  F. Gazzola,et al.  On a fourth order Stekloff eigenvalue problem , 2006 .

[2]  A weighted isoperimetric inequality and applications to symmetrization. , 1999 .

[3]  Menahem Schiffer,et al.  Some inequalities for Stekloff eigenvalues , 1974 .

[4]  L. Payne Some Isoperimetric Inequalities for Harmonic Functions , 1970 .

[5]  Jimmy Lamboley,et al.  An extremal eigenvalue problem for the Wentzell-Laplace operator , 2014, 1401.7098.

[6]  Friedemann Brock,et al.  An Isoperimetric Inequality for Eigenvalues of the Stekloff Problem , 2001 .

[7]  J. Kuttler,et al.  Remarks on a Stekloff Eigenvalue Problem , 1972 .

[8]  C. Xia Rigidity of compact manifolds with boundary and nonnegative Ricci curvature , 1997 .

[9]  V. G. Sigillito,et al.  Inequalities for membrane and Stekloff eigenvalues , 1968 .

[10]  W. Stekloff,et al.  Sur les problèmes fondamentaux de la physique mathématique , 1902 .

[11]  Xia,et al.  SP ] 7 J un 2 01 0 Inequalities for the Steklov Eigenvalues Changyu , 2010 .

[12]  L. Payne New isoperimetric inequalities for eigenvalues and other physical quantities , 1956 .

[13]  José F. Escobar The Geometry of the First Non-zero Stekloff Eigenvalue , 1997 .

[14]  S. Axler,et al.  Harmonic Function Theory , 1992 .

[15]  José F. Escobar An Isoperimetric Inequality and the First Steklov Eigenvalue , 1999 .

[16]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[17]  Liping Liu THEORY OF ELASTICITY , 2012 .

[18]  L. Payne,et al.  Some overdetermined boundary value problems for harmonic functions , 1991 .

[19]  Xuefeng Wang,et al.  Effective Boundary Conditions Resulting from Anisotropic and Optimally Aligned Coatings: The Two Dimensional Case , 2012 .

[20]  An Isoperimetric Inequality for Fundamental Tones of Free Plates , 2010, 1004.3318.

[21]  W. Stekloff,et al.  Sur les problèmes fondamentaux de la physique mathématique (suite et fin) , 1902 .

[22]  Piero Villaggio,et al.  Mathematical Models for Elastic Structures , 1997 .

[23]  C. Xia,et al.  Sharp bounds for the first non-zero Stekloff eigenvalues , 2009 .

[24]  Genqiang Liu The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian manifolds , 2011 .

[25]  D. Buoso,et al.  A few shape optimization results for a biharmonic Steklov problem , 2015, 1503.05828.

[26]  Richard Schoen,et al.  The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.

[27]  Gisèle Ruiz Goldstein,et al.  Derivation and physical interpretation of general boundary conditions , 2006, Advances in Differential Equations.

[28]  José F. Escobar A Comparison Theorem for the First Non-zero Steklov Eigenvalue☆ , 2000 .

[29]  Genqiang Liu The Weyl-type asymptotic formula for biharmonic Stekloff eigenvalues with Neumann boundary condition in Riemannian manifolds , 2010, 1008.3602.

[30]  F. Gazzola,et al.  On a fourth order Steklov eigenvalue problem , 2005 .