Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization

In this paper we consider the evolutionary Particle Swarm Optimization (PSO) algorithm, for the minimization of a computationally costly nonlinear function, in global optimization frameworks. We study a reformulation of the standard iteration of PSO (Clerc and Kennedy in IEEE Trans Evol Comput 6(1) 2002), (Kennedy and Eberhart in IEEE Service Center, Piscataway, IV: 1942–1948, 1995) into a linear dynamic system. We carry out our analysis on a generalized PSO iteration, which includes the standard one proposed in the literature. We analyze three issues for the resulting generalized PSO: first, for any particle we give both theoretical and numerical evidence on an efficient choice of the starting point. Then, we study the cases in which either deterministic and uniformly randomly distributed coefficients are considered in the scheme. Finally, some convergence analysis is also provided, along with some necessary conditions to avoid diverging trajectories. The results proved in the paper can be immediately applied to the standard PSO iteration.

[1]  Konstantinos E. Parsopoulos,et al.  Initializing the Particle Swarm Optimizer Using the Nonlinear Simplex Method , 2002 .

[2]  Daniel A. Ashlock,et al.  Evolutionary computation for modeling and optimization , 2005 .

[3]  Nguyen Xuan Hoai,et al.  PSO with randomized low-discrepancy sequences , 2007, GECCO '07.

[4]  Reiner Horst,et al.  Introduction to Global Optimization (Nonconvex Optimization and Its Applications) , 2002 .

[5]  Daniele Peri,et al.  Particle Swarm Optimization: efficient globally convergent modifications , 2006 .

[6]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[7]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[8]  Emilio F. Campana,et al.  Dynamic system analysis and initial particles position in Particle Swarm Optimization , 2006 .

[9]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[10]  Zbigniew Michalewicz,et al.  Evolutionary Optimization , 2012, Variants of Evolutionary Algorithms for Real-World Applications.

[11]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[12]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[13]  R. Poli The Sampling Distribution of Particle Swarm Optimisers and their Stability , 2007 .

[14]  Yongling Zheng,et al.  On the convergence analysis and parameter selection in particle swarm optimization , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[15]  P. Sarachik Principles of linear systems , 1997 .

[16]  Nguyen Xuan Hoai,et al.  Initialising PSO with randomised low-discrepancy sequences: the comparative results , 2007, 2007 IEEE Congress on Evolutionary Computation.

[17]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[18]  Kevin M. Passino,et al.  Stability of a one-dimensional discrete-time asynchronous swarm , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[20]  Riccardo Poli CSM-465: The Sampling Distribution of Particle Swarm Optimisers and their Stability , 2007 .

[21]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[22]  James Kennedy Methods of agreement: inference among the EleMentals , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[23]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[24]  Bernard Grossman,et al.  Parallel Global Aircraft Configuration Design Space Exploration , 1999 .

[25]  S. Lucidi,et al.  New global optimization methods for ship design problems , 2009 .

[26]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[27]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[28]  Marco Tomassini,et al.  a Survey of Genetic Algorithms , 1995 .

[29]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[30]  János D. Pintér,et al.  Global optimization in action , 1995 .

[31]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[32]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[33]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[34]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization , 2002 .

[35]  Daniele Peri,et al.  Global Optimization Algorithms in Naval Hydrodynamics , 2004 .

[36]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[37]  Kaisa Miettinen,et al.  On initial populations of a genetic algorithm for continuous optimization problems , 2007, J. Glob. Optim..

[38]  Kevin D. Seppi,et al.  The Kalman Swarm: A New Approach to Particle Motion in Swarm Optimization , 2004, GECCO.