Optimal foraging by zooplankton within patches: the case of Daphnia.

The motions of many physical particles as well as living creatures are mediated by random influences or 'noise'. One might expect that over evolutionary time scales internal random processes found in living systems display characteristics that maximize fitness. Here we focus on animal random search strategies [G.M. Viswanathan, S.V. Buldyrev, S. Havlin, M.G.E. Da Luz, E.P. Raposo, H.E. Stanley, Optimizing the success of random searches, Nature 401 (1999) 911-914; F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus Brownian stratagies, Phys. Rev. Lett. 88 (2002) 097901 and 89 (2002) 109902], and we describe experiments with the following Daphnia species: D. magna, D. galeata, D. lumholtzi, D. pulicaria, and D. pulex. We observe that the animals, while foraging for food, choose turning angles from distributions that can be described by exponential functions with a range of widths. This observation leads us to speculate and test the notion that this characteristic distribution of turning angles evolved in order to enhance survival. In the case of theoretical agents, some form of randomness is often introduced into search algorithms, especially when information regarding the sought object(s) is incomplete or even misleading. In the case of living animals, many studies have focused on search strategies that involve randomness [H.C. Berg, Random Walks in Biology, Princeton University, Princeton, New Jersey, 1993; A. Okubo, S.A. Levin (Eds.), Diffusion and Ecological Problems: Modern Perspectives, second ed., Springer, New York, 2001]. A simple theory based on stochastic differential equations of the motion backed up by a simulation shows that the collection of material (information, energy, food, supplies, etc.) by an agent executing Brownian-type hopping motions is optimized while foraging for a finite time in a supply patch of limited spatial size if the agent chooses turning angles taken from an exponential distribution with a specific stochastic intensity or 'noise width'. Search strategies that lead to optimization is a topic of high current interest across many disciplines [D. Wolpert, W. MacReady, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1997) 67].

[1]  P. Franks,et al.  Phytoplankton patches at fronts : A model of formation and response to wind events , 1997 .

[2]  F Bartumeus,et al.  Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. , 2002, Physical review letters.

[3]  L. Segel,et al.  Hypothesis for origin of planktonic patchiness , 1976, Nature.

[4]  W. H. Neill,et al.  Modelling animal movement as a persistent random walk in two dimensions: expected magnitude of net displacement , 2000 .

[5]  André W. Visser,et al.  Random motility of plankton: diffusive and aggregative contributions , 2003 .

[6]  Frederic Bartumeus,et al.  Erratum: Optimizing the Encounter Rate in Biological Interactions: Lévy versus Brownian Strategies [Phys. Rev. Lett.88, 097901 (2002)] , 2002 .

[7]  Bruno Eckhardt,et al.  Vortex formation by active agents as a model for Daphnia swarming. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  D. Coughlin,et al.  Swimming and search behaviour in clownfish, Amphiprion perideraion, larvae , 1992, Animal Behaviour.

[9]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[10]  K. Cuddington,et al.  Food-dependent aggregation and mobility of the water fleas Ceriodaphnia dubia and Daphnia pulex , 1994 .

[11]  A. Leising Copepod foraging in thin layers using SEARCH (imulator for xploring rea-estricted search in omplex abitats) , 2002 .

[12]  Jean-René Martin A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm , 2004, Behavioural Processes.

[13]  Hidekatsu Yamazaki,et al.  A new modelling approach for zooplankton behaviour , 1994 .

[14]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[15]  E. Zambianchi,et al.  Fractal characterization of three-dimensional zooplankton swimming trajectories , 2005 .

[16]  Lutz Schimansky-Geier,et al.  Advantages of hopping on a zig-zag course , 2004, q-bio/0410035.

[17]  J. Lagardère,et al.  Measuring cultured fish swimming behaviour: first results on rainbow trout using acoustic telemetry in tanks , 2004 .

[18]  Irene A. Stegun,et al.  Pocketbook of mathematical functions , 1984 .

[19]  Frank Moss,et al.  Noise in human muscle spindles , 1996, Nature.

[20]  Peter Kareiva,et al.  Some Examples of Animal Diffusion , 2001 .

[21]  E. Zambianchi,et al.  Lagrangian description of zooplankton swimming trajectories , 2004 .

[22]  A. Ōkubo Horizontal Dispersion and Critical Scales for Phytoplankton Patches , 1978 .

[23]  N. Shigesada,et al.  Biological Invasions: Theory and Practice , 1997 .

[24]  H. Berg Random Walks in Biology , 2018 .

[25]  D. Grünbaum,et al.  Individual foraging behaviors and population distributions of a planktonic predator aggregating to phytoplankton thin layers , 2006 .

[26]  R. Emlet,et al.  Gravity, drag, and feeding currents of small zooplankton. , 1985, Science.

[27]  A. Ōkubo,et al.  Patchy Distribution and Diffusion , 2001 .

[28]  Jules S. Jaffe,et al.  Microscale distributions of phytoplankton: initial results from a two-dimensional imaging fluorometer, OSST , 2001 .

[29]  A. Czirók,et al.  Exponential Distribution of Locomotion Activity in Cell Cultures , 1998, physics/9902022.

[30]  W. Lemon Fitness consequences of foraging behaviour in the zebra finch , 1991, Nature.

[31]  Daniel Grünbaum,et al.  Advection-Diffusion Equations for Internal State-Mediated Random Walks , 2000, SIAM J. Appl. Math..

[32]  Frank Moss,et al.  Pattern formation and stochastic motion of the zooplankton Daphnia in a light field , 2003 .

[33]  A. Ōkubo,et al.  Feeding currents and energy dissipation by Euchaeta rimana, a subtropical pelagic copepod , 1991 .

[34]  Alf H Øien Daphnicle dynamics based on kinetic theory: An analogue-modelling of swarming and behaviour of Daphnia , 2004, Bulletin of mathematical biology.

[35]  J. S. Suffern,et al.  Vertical migration in zooplankton as a predator avoidance mechanism1 , 1976 .

[36]  Laurent Seuront,et al.  Multifractal random walk in copepod behavior , 2001 .

[37]  André W. Visser,et al.  Plankton motility patterns and encounter rates , 2006, Oecologia.

[38]  E. Hofmann,et al.  The role of feeding behavior in sustaining copepod populations in the tropical ocean , 2005 .

[39]  Alison Abbott,et al.  Alliance of US labs plans to build map of cell signalling pathways , 1999, Nature.

[40]  Wolfgang Alt,et al.  Egocentric path integration models and their application to desert arthropods. , 2005, Journal of theoretical biology.

[41]  J. Ringelberg,et al.  Light-induced migration behaviour ofDaphniamodified by food and predator kairomones , 1998, Animal Behaviour.

[42]  D Grünbaum,et al.  Using Spatially Explicit Models to Characterize Foraging Performance in Heterogeneous Landscapes , 1998, The American Naturalist.

[43]  J. M. Smith,et al.  Optimality theory in evolutionary biology , 1990, Nature.

[44]  J. Strickler,et al.  Not by sieving alone: observations of suspension feeding in Daphnia , 1988 .

[45]  S. Bollens,et al.  Predator-induced diet vertical migration in a planktonic copepod , 1989 .

[46]  Kurt Wiesenfeld,et al.  Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system , 1998, Nature Neuroscience.

[47]  R. Tollrian,et al.  The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia , 2001, Nature.

[48]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[49]  S. Levin Patchiness in marine and terrestrial systems: from individuals to populations , 1994 .

[50]  Frank Moss,et al.  Stochastic resonance: noise-enhanced order , 1999 .

[51]  Daniel Grünbaum,et al.  Advection–diffusion equations for generalized tactic searching behaviors , 1999 .

[52]  David R. Bowne,et al.  Searching strategy of the painted turtle Chrysemys picta across spatial scales , 2004, Animal Behaviour.

[53]  F. Bartumeus,et al.  Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Magnus Wiktorsson,et al.  Modelling the movement of a soil insect. , 2004, Journal of theoretical biology.

[55]  Frank Moss,et al.  STOCHASTIC RESONANCE: TUTORIAL AND UPDATE , 1994 .

[56]  E A Codling,et al.  Sampling rate effects on measurements of correlated and biased random walks. , 2005, Journal of theoretical biology.

[57]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .

[58]  D. Ornstein Random walks. I , 1969 .

[59]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[60]  Lutz Schimansky-Geier,et al.  RANDOM WALK THEORY APPLIED TO DAPHNIA MOTION , 2004 .

[61]  L. M. Ward,et al.  Stochastic resonance and sensory information processing: a tutorial and review of application , 2004, Clinical Neurophysiology.

[62]  H. Malchow,et al.  Chaos and fractals in fish school motion , 2001 .

[63]  S. L. Lima,et al.  SEARCH STRATEGIES FOR LANDSCAPE‐LEVEL INTERPATCH MOVEMENTS , 1999 .

[64]  P. Lenz Zooplankton: sensory ecology and physiology , 2021 .

[65]  J. Deneubourg,et al.  A model of animal movements in a bounded space. , 2003, Journal of theoretical biology.

[66]  Frank Moss,et al.  Use of behavioural stochastic resonance by paddle fish for feeding , 1999, Nature.

[67]  John P. Miller,et al.  Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance , 1996, Nature.

[68]  P. Kareiva,et al.  Analyzing insect movement as a correlated random walk , 1983, Oecologia.

[69]  Marc Mangel,et al.  Dynamic models in behavioural and evolutionary ecology , 1988, Nature.

[70]  W. Lampert Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis , 1993 .

[71]  A. Dohrn,et al.  Swimming and feeding behaviour of the planktonic copepod Clausocalanus furcatus , 1999 .

[72]  A. Erhardt,et al.  Small-scale habitat fragmentation effects on pollinator behaviour: experimental evidence from the bumblebee Bombus veteranus on calcareous grasslands , 2002 .

[73]  J. Byers CORRELATED RANDOM WALK EQUATIONS OF ANIMAL DISPERSAL RESOLVED BY SIMULATION , 2001 .

[74]  Thomas A. Krouskop,et al.  Enhancement of subthreshold sensory nerve action potentials during muscle tension mediated noise , 1996 .

[75]  Frank Moss,et al.  Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance , 1993, Nature.