Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes

We study the secant varieties of the Veronese varieties and of Veronese reembeddings of a smooth projective variety. We give some conditions, under which these secant varieties are set-theoretically cut out by determinantal equations. More precisely, they are given by minors of a catalecticant matrix. These conditions include the case when the dimension of the projective variety is at most 3 and the degree of reembedding is sufficiently high. This gives a positive answer to a set-theoretic version of a question of Eisenbud in dimension at most 3. For dimension four and higher we produce plenty of examples when the catalecticant minors are not enough to set-theoretically define the secant varieties to high degree Veronese varieties. This is done by relating the problem to smoothability of certain zero-dimensional Gorenstein schemes. e-mail addresses: wkrych@mimuw.edu.pl and jabu@mimuw.edu.pl address: Institut Fourier, 100 rue des Maths, BP 74, 38402 St Martin d’Hères Cedex, France keywords: secant variety, catalecticant minors, Veronese variety, Veronese reembeddings, cactus variety, smoothable zero-dimensional schemes. AMS Mathematical Subject Classification 2010: Primary: 14M12; Secondary: 13H10, 14M17.

[1]  D. Cartwright,et al.  Hilbert schemes of 8 points , 2008, 0803.0341.

[2]  Anthony V. Geramita,et al.  The Curves Seminar at Queen's , 1981 .

[3]  Vassil Kanev Chordal varieties of Veronese varieties and catalecticant matrices , 1998 .

[4]  D. Eisenbud,et al.  Determinantal Equations for Curves of High Degree , 1988 .

[5]  A. Iarrobino,et al.  Some zero-dimensional generic singularities ; finite algebras having small tangent space , 1978 .

[6]  Mark Green,et al.  Generic Initial Ideals , 1998 .

[7]  R. Laza Deformations of singularities and variation of GIT quotients , 2006, math/0607003.

[8]  R. Stanley Hilbert functions of graded algebras , 1978 .

[9]  R. Notari,et al.  On the Gorenstein locus of some punctual Hilbert schemes , 2008, 0803.1135.

[10]  J. M. Landsberg,et al.  Determinantal equations for secant varieties and the Eisenbud–Koh–Stillman conjecture , 2010, J. Lond. Math. Soc..

[11]  M. Rossi,et al.  Isomorphism classes of short Gorenstein local rings via Macaulay's inverse system , 2009, 0911.3565.

[12]  Gregory G. Smith,et al.  Linear determinantal equations for all projective schemes , 2009, 0910.2424.

[13]  R. Notari,et al.  Poincaré Series and Deformations of Gorenstein Local Algebras , 2013 .

[14]  G. Gotzmann,et al.  Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes , 1978 .

[15]  D. Erman,et al.  A syzygetic approach to the smoothability of zero-dimensional schemes , 2008, 0812.3342.

[16]  Anthony Iarrobino,et al.  Compressed algebras: Artin algebras having given socle degrees and maximal length , 1984 .

[17]  On the irreducibility and the singularities of the Gorenstein locus of the punctual Hilbert scheme of degree 10 , 2011 .

[18]  J. Landsberg,et al.  Equations for secant varieties to Veronese varieties , 2010, 1006.0180.

[19]  F. S. Macaulay Some Properties of Enumeration in the Theory of Modular Systems , 1927 .

[20]  Joe Harris,et al.  The Geometry Of Schemes , 1992 .

[21]  Alessandra Bernardi,et al.  Computing symmetric rank for symmetric tensors , 2009, J. Symb. Comput..

[22]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .