Nagoya Termination Tool

This paper describes the implementation and techniques of the Nagoya Termination Tool, a termination prover for term rewrite systems. The main features of the tool are: the first implementation of the weighted path order which subsumes most of the existing reduction pairs, and the efficiency due to the strong cooperation with external SMT solvers. We present some new ideas that contribute to the efficiency and power of the tool.

[1]  Uwe Waldmann,et al.  An Extension of the Knuth-Bendix Ordering with LPO-Like Properties , 2007, LPAR.

[2]  Jürgen Giesl,et al.  Maximal Termination , 2008, RTA.

[3]  Jürgen Giesl,et al.  The Dependency Pair Framework: Combining Techniques for Automated Termination Proofs , 2005, LPAR.

[4]  Nao Hirokawa,et al.  KBO Orientability , 2009, Journal of Automated Reasoning.

[5]  René Thiemann,et al.  Generalized and Formalized Uncurrying , 2011, FroCoS.

[6]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[7]  Jürgen Giesl,et al.  Proving and Disproving Termination of Higher-Order Functions , 2005, FroCoS.

[8]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[9]  Hongwei Xi,et al.  Towards Automated Termination Proofs through "Freezing" , 1998, RTA.

[10]  Shuvendu K. Lahiri,et al.  Corral: A Solver for Reachability Modulo Theories , 2012 .

[11]  Nao Hirokawa,et al.  Dependency Pairs Revisited , 2004, RTA.

[12]  Shuvendu K. Lahiri,et al.  A Solver for Reachability Modulo Theories , 2012, CAV.

[13]  A. Yamada,et al.  Partial Status for KBO , 2013 .

[14]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[15]  Nao Hirokawa,et al.  Polynomial Interpretations with Negative Coefficients , 2004, AISC.

[16]  Jürgen Giesl,et al.  SAT Solving for Termination Analysis with Polynomial Interpretations , 2007, SAT.

[17]  Dieter Hofbauer,et al.  Termination of String Rewriting with Matrix Interpretations , 2006, RTA.

[18]  Hans Zantema,et al.  Matrix Interpretations for Proving Termination of Term Rewriting , 2006, Journal of Automated Reasoning.

[19]  Joachim Steinbach,et al.  Extensions and Comparison of Simplification Orderings , 1989, RTA.

[20]  Hans Zantema,et al.  Simple Termination of Rewrite Systems , 1997, Theor. Comput. Sci..

[21]  Donald E. Knuth,et al.  Simple Word Problems in Universal Algebras††The work reported in this paper was supported in part by the U.S. Office of Naval Research. , 1970 .

[22]  Jürgen Giesl,et al.  Mechanizing and Improving Dependency Pairs , 2006, Journal of Automated Reasoning.

[23]  Aart Middeldorp,et al.  Ordinals and Knuth-Bendix Orders , 2012, LPAR.

[24]  Akihisa Yamada,et al.  Unifying the Knuth-Bendix, recursive path and polynomial orders , 2013, PPDP.

[25]  Salvador Lucas,et al.  Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic , 2009, CADE.

[26]  Nao Hirokawa,et al.  Uncurrying for Termination and Complexity , 2013, Journal of Automated Reasoning.

[27]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).