Efficient numerical schemes for viscoplastic avalanches. Part 1: The 1D case
暂无分享,去创建一个
José M. Gallardo | Enrique Domingo Fernández-Nieto | Paul Vigneaux | E. Fernández-Nieto | J. Gallardo | P. Vigneaux
[1] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[2] Alfredo Bermúdez,et al. Upwind methods for hyperbolic conservation laws with source terms , 1994 .
[3] Carlos Par,et al. Duality methods with an automatic choice of parameters Application to shallow water equations in conservative form , 2001 .
[4] Manuel Jesús Castro Díaz,et al. On the convergence of the Bermúdez-Moreno algorithm with constant parameters , 2002, Numerische Mathematik.
[5] R. Glowinski,et al. Constrained optimization in seismic reflection tomography: a Gauss-Newton augmented Lagrangian approach , 2006 .
[6] Carlos Parés,et al. NUMERICAL TREATMENT OF WET/DRY FRONTS IN SHALLOW FLOWS WITH A MODIFIED ROE SCHEME , 2006 .
[7] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[8] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[9] Jean-Claude Latché,et al. On a numerical strategy to compute gravity currents of non-Newtonian fluids , 2004 .
[10] Manuel Jesús Castro Díaz,et al. On Well-Balanced Finite Volume Methods for Nonconservative Nonhomogeneous Hyperbolic Systems , 2007, SIAM J. Sci. Comput..
[11] T. Papanastasiou. Flows of Materials with Yield , 1987 .
[12] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[13] Christophe Ancey,et al. Plasticity and geophysical flows: A review , 2007 .
[14] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[15] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[16] E. Toro. Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .
[17] Amy Q. Shen,et al. Visco-plastic models of isothermal lava domes , 2000, Journal of Fluid Mechanics.
[18] Carlos Parés,et al. Duality methods with an automatic choice of parameters Application to shallow water equations in conservative form , 2001 .
[19] T. E. Lang,et al. A Biviscous Modified Bingham Model of Snow Avalanche Motion , 1983, Annals of Glaciology.
[20] A. Bermúdez,et al. Duality methods for solving variational inequalities , 1981 .
[21] Enrique D. Fernández-Nieto,et al. Shallow Water equations for Non-Newtonian fluids , 2010 .
[22] Enrique Domingo Fernández-Nieto,et al. A Well-balanced Finite Volume-Augmented Lagrangian Method for an Integrated Herschel-Bulkley Model , 2012, J. Sci. Comput..
[23] Pierre Saramito,et al. An adaptive finite element method for Bingham fluid flows around a cylinder , 2003 .
[24] Enrique D. Fernández-Nieto,et al. Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches , 2009 .
[25] Roland Glowinski,et al. On the Numerical Simulation of Viscoplastic Fluid Flow , 2011 .
[26] Manuel Jesús Castro Díaz,et al. Available Online at Www.sciencedirect.com Mathematical and So,snos ~__d,~ot" Computer Modelling the Numerical Treatment of Wet/dry Fronts in Shallow Flows: Application to One-layer and Two-layer Systems , 2022 .
[27] Zhenjiang You,et al. Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids , 2005 .
[28] D. Vola,et al. Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results , 2003 .
[29] Jean-Frédéric Gerbeau,et al. Derivation of viscous Saint-Venant system for laminar shallow water , 2001 .
[30] Manuel Jesús Castro Díaz,et al. A generalized duality method for solving variational inequalities Applications to some nonlinear Dirichlet problems , 2005, Numerische Mathematik.
[31] Philip L. Roe,et al. Upwind differencing schemes for hyperbolic conservation laws with source terms , 1987 .
[32] G. Vinay,et al. Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils , 2006 .
[33] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..
[34] Randall J. LeVeque,et al. Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .
[35] Ioan R. Ionescu,et al. Augmented Lagrangian for shallow viscoplastic flow with topography , 2013, J. Comput. Phys..
[36] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[37] Y. Vassilevski,et al. A NUMERICAL METHOD FOR THE SIMULATION OF FREE SURFACE FLOWS OF VISCOPLASTIC FLUID IN 3D , 2011 .
[38] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .