Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator
暂无分享,去创建一个
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] E. Schmidt. Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .
[3] P. Levy,et al. Problèmes concrets d'analyse fonctionnelle , 1952 .
[4] H. McKean. Geometry of Differential Space , 1973 .
[5] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[6] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[7] T. Figiel,et al. The dimension of almost spherical sections of convex bodies , 1976 .
[8] V. Sudakov,et al. Extremal properties of half-spaces for spherically invariant measures , 1978 .
[9] M. Gromov. Paul Levy's isoperimetric inequality , 1980 .
[10] C. Mueller,et al. Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere , 1982 .
[11] Lower bounds for the eigenvalues of Riemannian manifolds. , 1982 .
[12] A. Ehrhard. Symétrisation dans l'espace de Gauss. , 1983 .
[13] Une remarque sur les inegalites de Littlewood-Paley sous l'hypothese Γ2≧0 , 1985 .
[14] D. Bakry. Transformations de Riesz pour les semi-groupes symetriques Seconde patrie: Etude sous la condition Γ2≧0 , 1985 .
[15] D. Bakry. Un critère de non-explosion pour certaines diffusions sur une variété riemannienne complète , 1986 .
[16] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .
[17] Isopérimétrie et inégalités de Sobolev logarithmiques gaussiennes , 1988 .
[18] Analyse des semi-groupes ultrasphériques , 1993 .
[19] M. Talagrand. Isoperimetry, logarithmic sobolev inequalities on the discrete cube, and margulis' graph connectivity theorem , 1993 .
[20] M. Ledoux. Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space , 1994 .
[21] M. Ledoux. A simple analytic proof of an inequality by P. Buser , 1994 .
[22] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[23] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[24] Differential calculus on path and loop spaces. I: Logarithmic Sobolev inequalities on path spaces , 1995 .
[25] Sergey G. Bobkov,et al. A functional form of the isoperimetric inequality for the Gaussian measure , 1996 .
[26] S. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space , 1997 .