Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator

Abstract. We establish, by simple semigroup arguments, a Lévy–Gromov isoperimetric inequality for the invariant measure of an infinite dimensional diffusion generator of positive curvature with isoperimetric model the Gaussian measure. This produces in particular a new proof of the Gaussian isoperimetric inequality. This isoperimetric inequality strengthens the classical logarithmic Sobolev inequality in this context. A local version for the heat kernel measures is also proved, which may then be extended into an isoperimetric inequality for the Wiener measure on the paths of a Riemannian manifold with bounded Ricci curvature.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  E. Schmidt Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .

[3]  P. Levy,et al.  Problèmes concrets d'analyse fonctionnelle , 1952 .

[4]  H. McKean Geometry of Differential Space , 1973 .

[5]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[6]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[7]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[8]  V. Sudakov,et al.  Extremal properties of half-spaces for spherically invariant measures , 1978 .

[9]  M. Gromov Paul Levy's isoperimetric inequality , 1980 .

[10]  C. Mueller,et al.  Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere , 1982 .

[11]  Lower bounds for the eigenvalues of Riemannian manifolds. , 1982 .

[12]  A. Ehrhard Symétrisation dans l'espace de Gauss. , 1983 .

[13]  Une remarque sur les inegalites de Littlewood-Paley sous l'hypothese Γ2≧0 , 1985 .

[14]  D. Bakry Transformations de Riesz pour les semi-groupes symetriques Seconde patrie: Etude sous la condition Γ2≧0 , 1985 .

[15]  D. Bakry Un critère de non-explosion pour certaines diffusions sur une variété riemannienne complète , 1986 .

[16]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[17]  Isopérimétrie et inégalités de Sobolev logarithmiques gaussiennes , 1988 .

[18]  Analyse des semi-groupes ultrasphériques , 1993 .

[19]  M. Talagrand Isoperimetry, logarithmic sobolev inequalities on the discrete cube, and margulis' graph connectivity theorem , 1993 .

[20]  M. Ledoux Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space , 1994 .

[21]  M. Ledoux A simple analytic proof of an inequality by P. Buser , 1994 .

[22]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[23]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[24]  Differential calculus on path and loop spaces. I: Logarithmic Sobolev inequalities on path spaces , 1995 .

[25]  Sergey G. Bobkov,et al.  A functional form of the isoperimetric inequality for the Gaussian measure , 1996 .

[26]  S. Bobkov An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space , 1997 .