Probing dark matter via effective field theory approach

We analyze dark matter in most general form of effective field theory approach. To examine the interactions between the weakly interacting massive particles (WIMPs) and the Standard Model (SM) particles, we use the six-dimensional EFT mediated by new physics scale [Formula: see text] at tree level. After implementing a new effective field theory model in FeynRules [FeynRules 2.0 A complete toolbox for tree-level phenomenology, Comput. Phys. Comm. 185(8) (2014) 2250–2300] We investigate the theory and constrain the theory by using relic density generated by MadDM [MadDM v.3.0: A Comprehensive tool for dark matter studies, Phys. Dark Univ. 24 (2019) 100249] tool of MadGraph5_aMC@NLO [The automated computation of tree-level and next-to-leading order differential cross-sections, and their matching to parton shower simulations, J. High Energy Phys. 79 (2014) 2014].

[1]  Yi-Fu Cai,et al.  Interpreting cosmological tensions from the effective field theory of torsional gravity , 2019, Physical Review D.

[2]  Yi-Fu Cai,et al.  Searching for the dark force with 21-cm spectrum in light of EDGES , 2018, Physics Letters B.

[3]  M. Backovic,et al.  MadDM v.3.0: A comprehensive tool for dark matter studies , 2018, Physics of the Dark Universe.

[4]  Yi-Fu Cai,et al.  f (T ) gravity after GW170817 and GRB170817A , 2018, 1801.05827.

[5]  J. Zupan,et al.  Effective field theory for dark matter direct detection up to dimension seven , 2017, Journal of High Energy Physics.

[6]  A. Butter,et al.  Validity of dark matter effective theory , 2016, 1611.09908.

[7]  F. Maltoni,et al.  NLO predictions for the production of a (750 GeV) spin-two particle at the LHC , 2016, 1605.09359.

[8]  O. Mattelaer,et al.  Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case , 2015, The European physical journal. C, Particles and fields.

[9]  Patrick J. Fox,et al.  Dark Matter benchmark models for early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum , 2015, Physics of the Dark Universe.

[10]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[11]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[12]  T. Kitching,et al.  The dark matter of gravitational lensing , 2010, 1001.1739.

[13]  Chong-Sheng Li,et al.  Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC , 2009, 0912.4511.

[14]  M. Perelstein,et al.  Little Higgs dark matter , 2006, hep-ph/0603077.

[15]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[16]  Hsin-Chia Cheng,et al.  TeV symmetry and the little hierarchy problem , 2003, hep-ph/0308199.

[17]  G. Servant,et al.  Elastic scattering and direct detection of Kaluza-Klein dark matter , 2002, hep-ph/0209262.

[18]  G. Servant,et al.  Is the Lightest Kaluza-Klein Particle a Viable Dark Matter Candidate? , 2002, hep-ph/0206071.

[19]  M. Kamionkowski,et al.  Supersymmetric Dark Matter , 1995, hep-ph/9506380.

[20]  J. Wudka,et al.  Patterns of deviation from the standard model , 1994, hep-ph/9405214.

[21]  D. Wyler,et al.  Effective lagrangian analysis of new interactions and flavour conservation , 1986 .

[22]  J. Hagelin,et al.  Supersymmetric relics from the big bang , 1984 .

[23]  Thuy Mai Wilkinson Microwave Anisotropy Probe (WMAP) , 2015 .

[24]  J. Gramling,et al.  On the validity of the effective field theory for dark matter searches at the LHC, part II: complete analysis for the s-channel , 2014 .