Lyapunov techniques for a class of hybrid systems and reset controller syntheses for continuous-time plants

Ce manuscrit presente des resultats de recherche concernant une certaine classe de systemes hybrides. Les systemes hybrides peuvent etre utilises pour la modelisation de systemes physiques complexes et heterogenes dont l'evolution dans le temps presente des phenomenes discrets, tels que les commutations des convertisseurs ou les impacts des systemes mecaniques. De la meme maniere, la theorie hybride peut etre utilisee pour concevoir des controleurs hybrides, en general plus performants par rapport aux controleurs a temps continu. Dans ce cadre, les resultats de ce manuscrit peuvent etre divises en trois parties. D'abord des resultats de stabilite par rapport a un indice de performance de type Hinfini sont presentes pour une classe plutot large de systemes hybrides. Ensuite, nous introduisons de nouvelles architectures de controleurs hybrides pour les systemes a temps continu, caracterisees par le fait que leur etat peut etre reinitialise en fonction de la trajectoire. Enfin, nous presentons une technique de synthese convexe pour la conception d'un controleur hybride multi-objectif. La comparaison avec les resultats classique met en evidence les avantages en termes de performance par rapport aux controleurs a temps continu classiques, tout en preservant la propriete de robustesse et la simplicite de conception. Bien que la theorie hybride soit en plein developpement, ces travaux generalisent certains resultats existants, en ameliorant la simplicite d'implementation des solutions grâce a l'utilisation de la programmation semi-definie. En plus les architectures de controleurs hybrides presentees ont l'avantage de simplifier la generalisation de quelques resultats classiques concernant la synthese optimale par rapport a des indices de performance communs.

[1]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[2]  Sophie Tarbouriech,et al.  On hybrid state-feedback loops based on a dwell-time logic , 2012, ADHS.

[3]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[4]  Orhan Beker,et al.  On establishing classic performance measures for reset control systems , 2001 .

[5]  Michael R. Gottfredson Self‐Control Theory , 2007 .

[6]  Luca Zaccarian,et al.  On Finite Gain Lp Stability for Hybrid Systems , 2012, ADHS.

[7]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[8]  G. Stein,et al.  Respect the unstable , 2003 .

[9]  P. Olver Nonlinear Systems , 2013 .

[10]  E. Ryan On Brockett's Condition for Smooth Stabilizability and its Necessity in a Context of Nonsmooth Feedback , 1994 .

[11]  Luca Zaccarian,et al.  Analytical and numerical Lyapunov functions for SISO linear control systems with first‐order reset elements , 2011 .

[12]  João Pedro Hespanha,et al.  Stabilization of nonholonomic integrators via logic-based switching , 1999, Autom..

[13]  Sophie Tarbouriech,et al.  Using Luenberger observers and dwell‐time logic for feedback hybrid loops in continuous‐time control systems , 2013 .

[14]  Denis Arzelier,et al.  Moment LMI approach to LTV impulsive control , 2013, 52nd IEEE Conference on Decision and Control.

[15]  Chaohong Cai,et al.  Converse Lyapunov theorems and robust asymptotic stability for hybrid systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[16]  Ricardo G. Sanfelice,et al.  Invariance Principles for Hybrid Systems With Connections to Detectability and Asymptotic Stability , 2007, IEEE Transactions on Automatic Control.

[17]  Sophie Tarbouriech,et al.  Guaranteed stability for nonlinear systems by means of a hybrid loop , 2010 .

[18]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[19]  F. Fichera Techniques Lyapunov pour une classe de systèmes hybrides et synthèses de contrôleurs à réinitialisation , 2013 .

[20]  Sophie Tarbouriech,et al.  A convex hybrid H∞ synthesis with guaranteed convergence rate , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[21]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[22]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[23]  Michael Athans,et al.  Design of feedback control systems for stable plants with saturating actuators , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[24]  Chaohong Cai,et al.  Smooth Lyapunov Functions for Hybrid Systems—Part I: Existence Is Equivalent to Robustness , 2007, IEEE Transactions on Automatic Control.

[25]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[26]  Sophie Tarbouriech,et al.  Lyapunov-based hybrid loops for stability and performance of continuous-time control systems , 2013, Autom..

[27]  Lihua Xie,et al.  Stability analysis and design of reset control systems with discrete-time triggering conditions , 2012, Autom..

[28]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[29]  Orhan Beker,et al.  Submitted to IEEE Transactions on Automatic Control Plant with Integrator: An Example of Reset Control Overcoming Limitations of Linear Feedback , 2001 .

[30]  Jamal Daafouz,et al.  Guaranteed Cost Certification for Discrete-Time Linear Switched Systems With a Dwell Time , 2013, IEEE Transactions on Automatic Control.

[31]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[32]  Luca Zaccarian,et al.  Stability properties of reset systems , 2008, Autom..

[33]  Chaohong Cai,et al.  Characterizations of input-to-state stability for hybrid systems , 2009, Syst. Control. Lett..

[34]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[35]  J. Freudenberg,et al.  Right half plane poles and zeros and design tradeoffs in feedback systems , 1985 .

[36]  Tao Yang,et al.  In: Impulsive control theory , 2001 .

[37]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[38]  Ben M. Chen,et al.  Linear Systems Theory: A Structural Decomposition Approach , 2004 .

[39]  João Pedro Hespanha,et al.  Postprints from CCDC Title Hysteresis-based switching algorithms for supervisory control of uncertain systems Permalink , 2002 .

[40]  Sophie Tarbouriech,et al.  Anti-windup strategy for reset control systems , 2011 .

[41]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[42]  Sundeep Rangan Multiobjective H ∞ problems: linear and nonlinear control , 1997 .

[43]  Christophe Prieur,et al.  Asymptotic Controllability and Robust Asymptotic Stabilizability , 2001, SIAM J. Control. Optim..

[44]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[45]  Sophie Tarbouriech,et al.  Improving the performance of linear systems by adding a hybrid loop , 2011 .

[46]  João Pedro Hespanha,et al.  Switching between stabilizing controllers , 2002, Autom..

[47]  Gregory Stewart,et al.  Quadratic optimization for controller initialization in multivariable switching systems , 2010, Proceedings of the 2010 American Control Conference.

[48]  Antonio Loría,et al.  Uniform semiglobal practical asymptotic stability for non-autonomous cascaded systems and applications , 2008, Autom..

[49]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[50]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[51]  D. Luenberger Observers for multivariable systems , 1966 .

[52]  Luca Zaccarian,et al.  Stability and Performance of SISO Control Systems With First-Order Reset Elements , 2011, IEEE Transactions on Automatic Control.

[53]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[54]  L. Zaccarian,et al.  First order reset elements and the Clegg integrator revisited , 2005, Proceedings of the 2005, American Control Conference, 2005..

[55]  Claudio De Persis,et al.  Stability of quantized time-delay nonlinear systems: a Lyapunov–Krasowskii-functional approach , 2008, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[56]  D.D. Sworder,et al.  Control of systems subject to sudden change in character , 1976, Proceedings of the IEEE.

[57]  G. N. Silva,et al.  Measure Driven Differential Inclusions , 1996 .

[58]  Luca Zaccarian,et al.  Lazy sensors for the scheduling of measurement samples transmission in linear closed loops over networks , 2010, 49th IEEE Conference on Decision and Control (CDC).

[59]  Karl J. Åström,et al.  Limitations on control system performance , 1997, 1997 European Control Conference (ECC).

[60]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[61]  A. Satoh State Feedback Synthesis of Linear Reset Control with L2 Performance Bound via LMI Approach , 2011 .

[62]  R. Bambang,et al.  Mixed H2/H∞ control with pole placement: state feedback case , 1993, 1993 American Control Conference.

[63]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[64]  Orhan Beker,et al.  Fundamental properties of reset control systems , 2004, Autom..

[65]  Douglas P. Looze,et al.  A Sensitivity Tradeoff for Plants with Time Delay , 1985, 1985 American Control Conference.

[66]  Joao P. Hespanha,et al.  Logic-based switching algorithms in control , 1998 .

[67]  Kellen Petersen August Real Analysis , 2009 .

[68]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[69]  Andrew R. Teel,et al.  Feedback Stabilization of Nonlinear Systems: Sufficient Conditions and Lyapunov and Input-output Techniques , 1995 .

[70]  Richard M. Murray,et al.  Non-holonomic control systems: from steering to stabilization with sinusoids , 1995 .