Charge-modulated CO2 capture of C3N nanosheet: Insights from DFT calculations

[1]  A. Chakraborty,et al.  Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture , 2018 .

[2]  Xiubing Huang,et al.  Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review , 2017 .

[3]  Sean C. Smith,et al.  Borophene as a Promising Material for Charge-Modulated Switchable CO2 Capture. , 2017, ACS applied materials & interfaces.

[4]  B. Mortazavi Ultra high stiffness and thermal conductivity of graphene like C3N , 2017, 1704.04475.

[5]  M. Jiang,et al.  C3N—A 2D Crystalline, Hole‐Free, Tunable‐Narrow‐Bandgap Semiconductor with Ferromagnetic Properties , 2017, Advanced materials.

[6]  Xiangwei Zhu,et al.  Ternary NiCo2Px Nanowires as pH‐Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction , 2017, Advanced materials.

[7]  Q. Xue,et al.  Effects of Sulfur Doping and Humidity on CO2 Capture by Graphite Split Pore: A Theoretical Study. , 2017, ACS applied materials & interfaces.

[8]  Jin-Ho Choy,et al.  Mesoporous carbon nitrides: synthesis, functionalization, and applications. , 2017, Chemical Society reviews.

[9]  Sean C. Smith,et al.  Hexagonal boron nitride and graphene in-plane heterostructures: An experimentally feasible approach to charge-induced switchable CO 2 capture , 2016 .

[10]  Eun Kwang Lee,et al.  Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state , 2016, Proceedings of the National Academy of Sciences.

[11]  Sean C. Smith,et al.  Materials design for electrocatalytic carbon capture , 2016 .

[12]  Kehui Wu,et al.  Experimental realization of two-dimensional boron sheets. , 2015, Nature chemistry.

[13]  Shi Chen,et al.  Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity , 2015 .

[14]  Sean C. Smith,et al.  Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture , 2015, Scientific Reports.

[15]  Q. Xue,et al.  C2N: an excellent two-dimensional monolayer membrane for He separation , 2015 .

[16]  Sean C. Smith,et al.  Layered Graphene-Hexagonal BN Nanocomposites: Experimentally Feasible Approach to Charge-Induced Switchable CO2 Capture. , 2015, ChemSusChem.

[17]  J. Silvestre-Albero,et al.  High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position? , 2015 .

[18]  Charged-controlled separation of nitrogen from natural gas using boron nitride fullerene , 2014 .

[19]  Zhongfang Chen,et al.  Be(2)C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. , 2014, Angewandte Chemie.

[20]  Sean C. Smith,et al.  Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen. , 2014, ChemSusChem.

[21]  Xiaoqing Qiu,et al.  Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution , 2014, Advanced materials.

[22]  Understanding Universal Adsorption Limits for Hydrogen Storage in Nano Porous Systems , 2013, Advanced materials.

[23]  Marta G. Plaza,et al.  Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture , 2013 .

[24]  Qiao Sun,et al.  Charge-controlled switchable CO2 capture on boron nitride nanomaterials. , 2013, Journal of the American Chemical Society.

[25]  M. W. George,et al.  Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bifunctional metal–organic framework , 2012 .

[26]  Zifeng Yan,et al.  Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction , 2012 .

[27]  Aijun Du,et al.  First-principles prediction of metal-free magnetism and intrinsic half-metallicity in graphitic carbon nitride. , 2012, Physical review letters.

[28]  Bao-hang Han,et al.  Microporous polycarbazole with high specific surface area for gas storage and separation. , 2012, Journal of the American Chemical Society.

[29]  Randall Q Snurr,et al.  Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.

[30]  Erhan Deniz,et al.  Amidoximes: Promising Candidates for CO2 Capture , 2011 .

[31]  Victor Rudolph,et al.  A density functional theory study on CO2 capture and activation by graphene-like boron nitride with boron vacancy , 2011 .

[32]  Yong-Hyun Kim,et al.  Ambient carbon dioxide capture by boron-rich boron nitride nanotube. , 2011, Journal of the American Chemical Society.

[33]  Sean C. Smith,et al.  A density functional theory study of CO2 and N2 adsorption on aluminium nitride single walled nanotubes , 2010 .

[34]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[35]  S. Dai,et al.  Fluidic Carbon Precursors for Formation of Functional Carbon under Ambient Pressure Based on Ionic Liquids , 2010, Advanced materials.

[36]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[37]  M. Jacobson Evaluation of Proposed Solutions to Global Warming, Air Pollution, and Energy Security , 2008 .

[38]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[39]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[40]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[41]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[44]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .