Unconditional Byzantine Agreement for any Number of Faulty Processors

We present the first Byzantine agreement protocol which tolerates any number of maliciously faulty processors without relying on computational assumptions (such as the unforgeability of digital signatures).

[1]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[2]  Birgit Pfitzmann,et al.  Unconditional Byzantine Agreement with Good Majority , 1991, STACS.

[3]  F. MacWilliams,et al.  Codes which detect deception , 1974 .

[4]  John Rompel,et al.  One-way functions are necessary and sufficient for secure signatures , 1990, STOC '90.

[5]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[6]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[7]  Michael Waidner Byzantinische Verteilung ohne kryptographische Annahmen trotz beliebig vieler Fehler , 1992 .

[8]  Danny Dolev,et al.  Authenticated Algorithms for Byzantine Agreement , 1983, SIAM J. Comput..

[9]  Andrew Chi-Chih Yao,et al.  On the Improbability of Reaching Byzantine Agreements (Preliminary Version) , 1989, STOC 1989.

[10]  Bert den Boer,et al.  Detection of Disrupters in the DC Protocol , 1990, EUROCRYPT.

[11]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[12]  David Chaum,et al.  Unconditionally Secure Digital Signatures , 1990, CRYPTO.

[13]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[14]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[15]  Andrew Chi-Chih Yao,et al.  On the improbability of reaching Byzantine agreements , 1989, STOC '89.

[16]  Herbert O. Burton Inversionless decoding of binary BCH codes , 1971, IEEE Trans. Inf. Theory.