Unconditional Byzantine Agreement for any Number of Faulty Processors
暂无分享,去创建一个
[1] Silvio Micali,et al. A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..
[2] Birgit Pfitzmann,et al. Unconditional Byzantine Agreement with Good Majority , 1991, STACS.
[3] F. MacWilliams,et al. Codes which detect deception , 1974 .
[4] John Rompel,et al. One-way functions are necessary and sufficient for secure signatures , 1990, STOC '90.
[5] Leslie Lamport,et al. Reaching Agreement in the Presence of Faults , 1980, JACM.
[6] Larry Carter,et al. New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..
[7] Michael Waidner. Byzantinische Verteilung ohne kryptographische Annahmen trotz beliebig vieler Fehler , 1992 .
[8] Danny Dolev,et al. Authenticated Algorithms for Byzantine Agreement , 1983, SIAM J. Comput..
[9] Andrew Chi-Chih Yao,et al. On the Improbability of Reaching Byzantine Agreements (Preliminary Version) , 1989, STOC 1989.
[10] Bert den Boer,et al. Detection of Disrupters in the DC Protocol , 1990, EUROCRYPT.
[11] J. Spencer. Probabilistic Methods in Combinatorics , 1974 .
[12] David Chaum,et al. Unconditionally Secure Digital Signatures , 1990, CRYPTO.
[13] Whitfield Diffie,et al. New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.
[14] Michael O. Rabin,et al. Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..
[15] Andrew Chi-Chih Yao,et al. On the improbability of reaching Byzantine agreements , 1989, STOC '89.
[16] Herbert O. Burton. Inversionless decoding of binary BCH codes , 1971, IEEE Trans. Inf. Theory.