General Framework for Rotation Invariant Texture Classification Through Co-occurrence of Patterns

[1]  Rong Xiao,et al.  Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Antonio Fernández,et al.  General Framework for Rotation Invariant Texture Classification Through Co-occurrence of Patterns , 2014, Journal of Mathematical Imaging and Vision.

[3]  Kazuhiro Fukui,et al.  Rotation Invariant Co-occurrence among Adjacent LBPs , 2012, ACCV Workshops.

[4]  Tieniu Tan,et al.  Spatial Graph for Image Classification , 2012, ACCV.

[5]  Shu-Sheng Hao,et al.  Image retrieval by region of interest motif co-occurence matrix , 2012, 2012 International Symposium on Intelligent Signal Processing and Communications Systems.

[6]  Xianbiao Qi,et al.  Pairwise Rotation Invariant Co-occurrence Local Binary Pattern , 2012, ECCV.

[7]  Su Yang,et al.  Image matching based on orientation-magnitude histograms and global consistency , 2012, Pattern Recognit..

[8]  Matti Pietikäinen,et al.  Discriminative features for texture description , 2012, Pattern Recognit..

[9]  Cécile Barat,et al.  Spatial orientations of visual word pairs to improve Bag-of-Visual-Words model , 2012, BMVC.

[10]  Francesco Bianconi,et al.  Automatic classification of granite tiles through colour and texture features , 2012, Expert Syst. Appl..

[11]  Hong Liu,et al.  Crowd Density Estimation Based on Local Binary Pattern Co-Occurrence Matrix , 2012, 2012 IEEE International Conference on Multimedia and Expo Workshops.

[12]  Jin Wang,et al.  Multi-scale local pattern co-occurrence matrix for textural image classification , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[13]  M. Helfroush,et al.  Texture classification by using co-occurrences of Local Binary Patterns , 2012, 20th Iranian Conference on Electrical Engineering (ICEE2012).

[14]  Shervan Fekri Ershad,et al.  Texture Classification Approach Based on Combination of Edge & Co-occurrence and Local Binary Pattern , 2012, ArXiv.

[15]  Kazuhiro Fukui,et al.  Feature Extraction Based on Co-occurrence of Adjacent Local Binary Patterns , 2011, PSIVT.

[16]  Paul F. Whelan,et al.  Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification , 2011, Machine Vision and Applications.

[17]  Donald A. Adjeroh,et al.  Comparison of Texture Analysis Schemes Under Nonideal Conditions , 2011, IEEE Transactions on Image Processing.

[18]  Qiang Song,et al.  Illumination Invariant Texture Classification with Pattern Co-occurrence Matrix , 2011, CSIE 2011.

[19]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[20]  Jean Ponce,et al.  A Theoretical Analysis of Feature Pooling in Visual Recognition , 2010, ICML.

[21]  Lei Zhang,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[22]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Francesco Bianconi,et al.  Robust color texture features based on ranklets and discrete Fourier transform , 2009, J. Electronic Imaging.

[24]  Jean-Michel Jolion,et al.  A Bag of Strings Representation for Image Categorization , 2009, Journal of Mathematical Imaging and Vision.

[25]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[26]  Gertjan J. Burghouts,et al.  Material-specific adaptation of color invariant features , 2009, Pattern Recognit. Lett..

[27]  Jingyu Yang,et al.  Image retrieval based on the texton co-occurrence matrix , 2008, Pattern Recognit..

[28]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[29]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Gabriela Csurka,et al.  Adapted Vocabularies for Generic Visual Categorization , 2006, ECCV.

[31]  Yuan-Fang Wang,et al.  The use of bigrams to enhance text categorization , 2002, Inf. Process. Manag..

[32]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Liam O'Carroll,et al.  CLASSICAL INVARIANT THEORY (London Mathematical Society Student Texts 44) By PETER J. OLVER: 280 pp., £15.95 (LMS members' price £11.96), ISBN 0-521-55821-2 (Cambridge University Press, 1999). , 2001 .

[34]  B. Mirkin Eleven Ways to Look at the Chi-Squared Coefficient for Contingency Tables , 2001 .

[35]  Jana Reinhard,et al.  Textures A Photographic Album For Artists And Designers , 2016 .

[36]  Yue Zhang,et al.  Object recognition using Gabor co-occurrence similarity , 2013, Pattern Recognit..

[37]  Loris Nanni,et al.  Random interest regions for object recognition based on texture descriptors and bag of features , 2012, Expert Syst. Appl..

[38]  Dr. P. Harini,et al.  A New Logical Compact LBP Co-Occurrence Matrix for Texture Analysis , 2012 .

[39]  Marcos X. Álvarez-Cid,et al.  Texture Description Through Histograms of Equivalent Patterns , 2012, Journal of Mathematical Imaging and Vision.

[40]  Elena González,et al.  Robust colour texture features based on ranklets and discrete Fourier transform , 2011 .

[41]  Yo-Sung Ho,et al.  Advances in Image and Video Technology , 2011, Lecture Notes in Computer Science.

[42]  L. Nanni,et al.  Selecting the Best Performing Rotation Invariant Patterns in Local Binary/Ternary Patterns , 2010, IPCV.

[43]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[44]  Robert P. W. Duin,et al.  A Matlab Toolbox for Pattern Recognition , 2004 .

[45]  P. Olver Classical Invariant Theory , 1999 .

[46]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[47]  Henri Theil,et al.  Statistical Decomposition Analysis: With Applications in the Social and Administrative Sciences , 1972 .

[48]  Takumi Kobayashi,et al.  2010 International Conference on Pattern Recognition Bag of Hierarchical Co-occurrence Features for Image Classification , 2022 .