Machine Learning in Bioinformatics

Machine learning techniques such as Markov models, support vector machines, neural networks, graphical models, etc., have been successful in analyzing life science data because of their capabilities of handling randomness and uncertainties of data and noise and in generalization. This book compiles recent approaches in machine learning, showing promise in addressing different complex bioinformatics applications from prominent researchers in the field.

[1]  Taizo Hanai,et al.  Gene Expression Analysis Using Fuzzy ART , 2001 .

[2]  A. Schuster,et al.  Tumor classification by gene expression profiling: comparison and validation of five clustering methods , 2001, SIGB.

[3]  Hojjat Adeli,et al.  Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems , 1994 .

[4]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[5]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[6]  Rudolf Kruse,et al.  Fuzzy-systems in computer science , 1994 .

[7]  Cathy H. Wu,et al.  Neural networks and genome informatics , 2000 .

[8]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[9]  Cathy H. Wu Artificial Neural Networks for Molecular Sequence Analysis , 1997, Comput. Chem..

[10]  Björn Olsson,et al.  Artificial intelligence techniques for bioinformatics. , 2002, Applied bioinformatics.

[11]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[12]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Vladimir Brusic,et al.  Knowledge discovery and data mining in biological databases , 1999, The Knowledge Engineering Review.

[14]  Limsoon Wong,et al.  Kleisli, a functional query system , 2000, J. Funct. Program..

[15]  Anders Krogh,et al.  Improving Predicition of Protein Secondary Structure Using Structured Neural Networks and Multiple Sequence Alignments , 1996, J. Comput. Biol..

[16]  Bernd Fritzke,et al.  Growing cell structures--A self-organizing network for unsupervised and supervised learning , 1994, Neural Networks.

[17]  Berndt Müller,et al.  Neural networks: an introduction , 1990 .

[18]  David Coley,et al.  Introduction to Genetic Algorithms for Scientists and Engineers , 1999 .

[19]  Cathy H. Wu,et al.  Neural Networks for Molecular Sequence Classification , 1993, ISMB.

[20]  Benny Lautrup,et al.  A novel approach to prediction of the 3‐dimensional structures of protein backbones by neural networks , 1990, NIPS.

[21]  M. Sternberg,et al.  A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons. , 1987, Journal of molecular biology.

[22]  Andrew K. C. Wong,et al.  A genetic algorithm for multiple molecular sequence alignment , 1997, Comput. Appl. Biosci..

[23]  Raouf N. Gorgui-Naguib,et al.  A fuzzy logic based-method for prognostic decision making in breast and prostate cancers , 2003, IEEE Transactions on Information Technology in Biomedicine.

[24]  Cathy H. Wu,et al.  Neural networks for full-scale protein sequence classification: Sequence encoding with singular value decomposition , 1995, Machine Learning.

[25]  Yoichi Hayashi,et al.  Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system , 2004, Artif. Intell. Medicine.

[26]  Bruce A. Shapiro,et al.  A massively parallel genetic algorithm for RNA secondary structure prediction , 1994, The Journal of Supercomputing.

[27]  Carlo Di Bello,et al.  Analysis of an associative memory neural network for pattern identification in gene expression data , 2001, BIOKDD.

[28]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[29]  Søren Brunak,et al.  Neural network predicts sequence of TP53 gene based on DNA chip , 2002, Bioinform..

[30]  D. Higgins,et al.  SAGA: sequence alignment by genetic algorithm. , 1996, Nucleic acids research.

[31]  Katsutoshi Takahashi,et al.  An Approach to Amino Acid Sequence Alignment Using a Genetic Algorithm , 1995 .

[32]  Ruth Pachter,et al.  Protein Structure Analysis and Prediction , 1995 .

[33]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[34]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[35]  Kumar Chellapilla,et al.  Multiple sequence alignment using evolutionary programming , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[36]  Dennis Shasha,et al.  Application of neural networks to biological data mining: a case study in protein sequence classification , 2000, KDD '00.

[37]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[38]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Kari Torkkola,et al.  Self-organizing maps in mining gene expression data , 2001, Inf. Sci..

[40]  Frank Klawonn,et al.  Foundations of fuzzy systems , 1994 .

[41]  Andreas D. Baxevanis,et al.  Bioinformatics - a practical guide to the analysis of genes and proteins , 2001, Methods of biochemical analysis.

[42]  Ed Keedwell,et al.  Single-layer artificial neural networks for gene expression analysis , 2004, Neurocomputing.

[43]  Pierre Baldi,et al.  Bioinformatics - the machine learning approach (2. ed.) , 2000 .

[44]  B A Shapiro,et al.  A Boltzmann filter improves the prediction of RNA folding pathways in a massively parallel genetic algorithm. , 1999, Journal of biomolecular structure & dynamics.

[45]  Manish Sarkar,et al.  Characterization of medical time series using fuzzy similarity-based fractal dimensions , 2003, Artif. Intell. Medicine.

[46]  Nello Cristianini,et al.  Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..

[47]  Moritoshi Yasunaga,et al.  A parallel hybrid genetic algorithm for multiple protein sequence alignment , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[48]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[49]  G Benedetti,et al.  A genetic algorithm to search for optimal and suboptimal RNA secondary structures. , 1995, Biophysical chemistry.

[50]  David Haussler,et al.  Using the Fisher Kernel Method to Detect Remote Protein Homologies , 1999, ISMB.

[51]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[52]  L. Wong,et al.  Technologies for Integrating Biological Data , 2002, Briefings Bioinform..

[53]  Robert Ghanea-Hercock,et al.  Applied Evolutionary Algorithms in Java , 2003, Springer New York.

[54]  E. Uberbacher,et al.  Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[56]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[57]  Thomas A. Darden,et al.  Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method , 2001, Bioinform..

[58]  C. Pleij,et al.  The computer simulation of RNA folding pathways using a genetic algorithm. , 1995, Journal of molecular biology.

[59]  E. Snyder,et al.  Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks. , 1993, Nucleic acids research.

[60]  S. Agatonovic-Kustrin,et al.  Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. , 2000, Journal of pharmaceutical and biomedical analysis.

[61]  Alfonso Valencia,et al.  A hierarchical unsupervised growing neural network for clustering gene expression patterns , 2001, Bioinform..

[62]  Vladimir Brusic,et al.  A neural network model approach to the study of human TAP transporter , 1998, Silico Biol..

[63]  Griffin M. Weber,et al.  Classification of gene expression data using fuzzy logic , 2002, J. Intell. Fuzzy Syst..

[64]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[65]  Abraham Kandel,et al.  Fuzzy Expert Systems , 1991 .

[66]  Vladimir Brusic,et al.  Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network , 1998, Bioinform..

[67]  Francisco Azuaje,et al.  Reply to comments on 'A computational evolutionary approach to evolving game strategy and Cooperation' , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[68]  Jin Chu Wu,et al.  The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation , 2001, Bioinform..

[69]  J. Dopazo,et al.  Phylogenetic Reconstruction Using an Unsupervised Growing Neural Network That Adopts the Topology of a Phylogenetic Tree , 1997, Journal of Molecular Evolution.

[70]  Jernej Virant,et al.  Fuzzy Logic Alternative for Analysis in the Biomedical Sciences , 1999, Comput. Biomed. Res..

[71]  Ed Keedwell,et al.  Genetic Algorithms for Gene Expression Analysis , 2003, EvoWorkshops.

[72]  Bernard De Baets,et al.  Fuzzy rule-based models for decision support in ecosystem management. , 2004, The Science of the total environment.

[73]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[74]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[75]  Michael Negnevitsky,et al.  Artificial Intelligence: A Guide to Intelligent Systems , 2001 .

[76]  Diego Kuonen,et al.  Challenges in Bioinformatics for Statistical Data Miners , 2003 .

[77]  Toshio Shimizu,et al.  Multiple Sequence Alignment Using a Genetic Algorithm , 1996 .

[78]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[79]  P. Woolf,et al.  A fuzzy logic approach to analyzing gene expression data. , 2000, Physiological genomics.

[80]  John J. Grefenstette,et al.  How Genetic Algorithms Work: A Critical Look at Implicit Parallelism , 1989, ICGA.

[81]  LiMin Fu,et al.  Knowledge discovery based on neural networks , 1999, Commun. ACM.

[82]  R. Doolittle,et al.  Progressive sequence alignment as a prerequisitetto correct phylogenetic trees , 2007, Journal of Molecular Evolution.

[83]  Cathy H. Wu Classification Neural Networks for Rapid Sequence Annotation and Automated Database Organization , 1993, Comput. Chem..

[84]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[85]  P. Törönen,et al.  Analysis of gene expression data using self‐organizing maps , 1999, FEBS letters.

[86]  S. Le,et al.  Prediction of common secondary structures of RNAs: a genetic algorithm approach. , 2000, Nucleic acids research.

[87]  T. D. Schneider,et al.  Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli. , 1982, Nucleic acids research.

[88]  Joachim Schneider,et al.  Fuzzy logic-based tumor marker profiles including a new marker tumor M2-PK improved sensitivity to the detection of progression in lung cancer patients. , 2003, Anticancer research.

[89]  Novruz Allahverdi,et al.  A fuzzy expert system design for diagnosis of prostate cancer , 2003, CompSysTech '03.

[90]  Giorgio Valentini,et al.  Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles , 2002, Artif. Intell. Medicine.

[91]  Sanjeev S. Tambe,et al.  Artificial neural networks for prediction of mycobacterial promoter sequences , 2003, Comput. Biol. Chem..

[92]  C. Wu,et al.  Back-propagation and counter-propagation neural networks for phylogenetic classification of ribosomal RNA sequences. , 1994, Nucleic acids research.

[93]  Cathy H. Wu,et al.  Protein classification artificial neural system , 1992, Protein science : a publication of the Protein Society.