Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan.

Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.

[1]  H. Clevers,et al.  Tissue-resident adult stem cell populations of rapidly self-renewing organs. , 2010, Cell Stem Cell.

[2]  T. Andrews,et al.  Interplay of dFOXO and Two ETS-Family Transcription Factors Determines Lifespan in Drosophila melanogaster , 2014, PLoS genetics.

[3]  A. Goldman,et al.  Molecular mechanisms of Barrett's esophagus and adenocarcinoma , 2011, Annals of the New York Academy of Sciences.

[4]  A. Schetter,et al.  Inflammatory and MicroRNA Gene Expression as Prognostic Classifier of Barrett's-Associated Esophageal Adenocarcinoma , 2010, Clinical Cancer Research.

[5]  Ruth R. Montgomery,et al.  Age-dependent dysregulation of innate immunity , 2013, Nature Reviews Immunology.

[6]  A. Spradling,et al.  Physiological and stem cell compartmentalization within the Drosophila midgut , 2013, eLife.

[7]  Nichole A. Broderick,et al.  Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. , 2009, Genes & development.

[8]  I. Holzman,et al.  Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats , 2013, PloS one.

[9]  J. Whitsett,et al.  FOXM1 Promotes Allergen-Induced Goblet Cell Metaplasia and Pulmonary Inflammation , 2012, Molecular and Cellular Biology.

[10]  W. P. Hanratty,et al.  The Drosophila Tumorous lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus , 1993, Molecular and General Genetics MGG.

[11]  H. Agaisse,et al.  The UPD3 cytokine couples environmental challenge and intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment. , 2013, Developmental biology.

[12]  David Bilder,et al.  A tumor suppressive activity of Drosophila Polycomb genes mediated by JAK/STAT signaling , 2009, Nature Genetics.

[13]  Ronald L. Davis,et al.  Gene expression systems in Drosophila: a synthesis of time and space. , 2004, Trends in genetics : TIG.

[14]  H. Jasper,et al.  Dpp signaling determines regional stem cell identity in the regenerating adult Drosophila gastrointestinal tract. , 2013, Cell reports.

[15]  Jessamina E. Blum,et al.  Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila melanogaster , 2013, mBio.

[16]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[17]  Ronald L. Davis,et al.  Spatiotemporal Gene Expression Targeting with the TARGET and Gene-Switch Systems in Drosophila , 2004, Science's STKE.

[18]  B. Lemaître,et al.  Autocrine and paracrine unpaired signaling regulate intestinal stem cell maintenance and division , 2012, Journal of Cell Science.

[19]  Benjamin H. White,et al.  A conditional tissue-specific transgene expression system using inducible GAL4 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Yamada,et al.  Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila. , 2015, Cell reports.

[21]  T. Fu,et al.  Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice , 2015, PloS one.

[22]  Gil B. Carvalho,et al.  Quantifying Drosophila food intake: comparative analysis of current methodology , 2014, Nature Methods.

[23]  B. Edgar,et al.  Cytokine/Jak/Stat Signaling Mediates Regeneration and Homeostasis in the Drosophila Midgut , 2009, Cell.

[24]  M. Karin,et al.  Immunity, Inflammation, and Cancer , 2010, Cell.

[25]  C. Micchelli,et al.  Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation , 2009, Development.

[26]  S. Benzer,et al.  Drosophila lifespan enhancement by exogenous bacteria. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Pellegrini,et al.  Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality. , 2015, Cell reports.

[28]  S. Benzer,et al.  Prandiology of Drosophila and the CAFE assay , 2007, Proceedings of the National Academy of Sciences.

[29]  B. Lemaître,et al.  The digestive tract of Drosophila melanogaster. , 2013, Annual review of genetics.

[30]  P. Correa,et al.  Carcinogenesis of Helicobacter pylori. , 2007, Gastroenterology.

[31]  R. Lehmann,et al.  Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila , 2010, PLoS genetics.

[32]  D. Walker,et al.  Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[33]  J. Clemente,et al.  The Impact of the Gut Microbiota on Human Health: An Integrative View , 2012, Cell.

[34]  C. Micchelli,et al.  Quiescent gastric stem cells maintain the adult Drosophila stomach , 2011, Proceedings of the National Academy of Sciences.

[35]  S. Itzkowitz,et al.  Intestinal inflammation and cancer. , 2011, Gastroenterology.

[36]  J. Briscoe,et al.  A fluorescent reporter of caspase activity for live imaging , 2008, Proceedings of the National Academy of Sciences.

[37]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[38]  B. Edgar,et al.  Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells , 2014, The EMBO journal.

[39]  R. Dubreuil Copper cells and stomach acid secretion in the Drosophila midgut. , 2004, The international journal of biochemistry & cell biology.

[40]  B. Biteau,et al.  Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. , 2011, Cell stem cell.

[41]  Hsiao Yu Fang,et al.  Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. , 2013, Cell reports.

[42]  Zheng Guo,et al.  Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis , 2013, The Journal of cell biology.

[43]  N. Perrimon,et al.  GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. , 2007, Gene expression patterns : GEP.

[44]  H. Jasper,et al.  PGRP-SC2 Promotes Gut Immune Homeostasis to Limit Commensal Dysbiosis and Extend Lifespan , 2014, Cell.

[45]  A. Mantovani,et al.  Cancer: Inflaming metastasis , 2008, Nature.

[46]  D. Sinderen,et al.  Gut microbiota composition correlates with diet and health in the elderly , 2012, Nature.

[47]  Yun Lu,et al.  Sox2 cooperates with inflammation-mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells. , 2013, Cell stem cell.

[48]  H. Ryoo,et al.  Integration of UPRER and Oxidative Stress Signaling in the Control of Intestinal Stem Cell Proliferation , 2014, PLoS genetics.

[49]  Heinrich Jasper,et al.  JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. , 2008, Cell stem cell.

[50]  Heinrich Jasper,et al.  Regulation of Drosophila lifespan by JNK signaling , 2011, Experimental Gerontology.

[51]  J. Ryu,et al.  Innate Immune Homeostasis by the Homeobox Gene Caudal and Commensal-Gut Mutualism in Drosophila , 2008, Science.

[52]  Nichole A. Broderick,et al.  Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology , 2014, mBio.

[53]  Gerald B Call,et al.  G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila , 2009, Nature Methods.

[54]  Angelo Zullo,et al.  Follow-up of intestinal metaplasia in the stomach: When, how and why. , 2012, World journal of gastrointestinal oncology.

[55]  Marcus J. Claesson,et al.  Composition, variability, and temporal stability of the intestinal microbiota of the elderly , 2010, Proceedings of the National Academy of Sciences.

[56]  J. Peters,et al.  The Molecular Pathogenesis of Barrett’s Esophagus: Common Signaling Pathways in Embryogenesis Metaplasia and Neoplasia , 2010, Journal of Gastrointestinal Surgery.

[57]  A. Bailey,et al.  Enteric Neurons and Systemic Signals Couple Nutritional and Reproductive Status with Intestinal Homeostasis , 2011, Cell metabolism.

[58]  H. Jasper,et al.  Intestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster , 2013, Front. Cell. Infect. Microbiol..