BSSE‐corrected geometry and harmonic and anharmonic vibrational frequencies of formamide–water and formamide–formamide dimers

The basis set superposition error (BSSE) influence in the geometry structure, interaction energies, and intermolecular harmonic and anharmonic vibrational frequencies of cyclic formamide-formamide and formamide-water dimers have been studied using different basis sets (6-31G, 6-31G**, 6-31G**, D95V, D95V**, and D95V**). The a posteriori "counterpoise" (CP) correction scheme has been compared with the a priori "chemical Hamiltonian approach" (CHA) both at the Hartree-Fock (HF) and second-order Moller-Plesset many-body perturbation (MP2) levels of theory. The effect of BSSE on geometrical parameters, interaction energies, and intermolecular harmonic vibrational frequencies are discussed and compared with the existing experimental data. As expected, the BSSE-free CP and CHA interaction energies usually show less deep minima than those obtained from the uncorrected methods at both the HF and MP2 levels. Focusing on the correlated level, the amount of BSSE in the intermolecular interaction energies is much larger than that at the HF level, and this effect is also conserved in the values of the force constants and harmonic vibrational frequencies. All these results clearly indicate the importance of the proper BSSE-free correlation treatment with the well-defined basis functions. At the same time, the results show a good agreement between the a priori CHA and a posteriori CP correction scheme; this agreement is remarkable in the case of large and well-balanced basis sets. The anharmonic frequency correction values also show an important BSSE dependence, especially for hydrogen bond stretching and for low frequencies belonging to the intermolecular normal modes. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 103: 841-853, 2005

[1]  J. Sobhanadri,et al.  Ab initio calculations on some binary systems involving hydrogen bonds , 1995 .

[2]  William H. Press,et al.  Numerical recipes , 1990 .

[3]  J. Šponer,et al.  MP2 and CCSD(T) calculations on Hbonded and stacked formamide…formamide and formamidine…formamidine dimers , 1996 .

[4]  S. Suhai,et al.  Ab initio study of the ammonia–ammonia dimer: BSSE-free structures and intermolecular harmonic vibrational frequencies , 2004 .

[5]  X. Fradera,et al.  Effect of basis set superposition error on the electron density of molecular complexes , 2000 .

[6]  G. Halász,et al.  BSSE-Free SCF Algorithm for Treating Several Weakly Interacting Systems , 1996 .

[7]  P. Salvador,et al.  Counterpoise-corrected geometries and harmonic frequencies of N-body clusters: Application to (HF)n (n=3,4) , 2003 .

[8]  P. Surján,et al.  Improved intermolecular SCF theory and the BSSE problem , 1989 .

[9]  Jaime M. Martell,et al.  MOLECULAR DECOMPOSITIONS OF ACETALDEHYDE AND FORMAMIDE : THEORETICAL STUDIES USING HARTREE-FOCK, MOLLER-PLESSET AND DENSITY FUNCTIONAL THEORIES , 1997 .

[10]  F. B. van Duijneveldt,et al.  Weakly Bonded Systems , 2007 .

[11]  S. Suhai,et al.  A BSSE-free SCF algorithm for intermolecular interactions. IV. Generalization for open-shell systems , 1998 .

[12]  P. Åstrand,et al.  Complex formation between water and formamide , 1993 .

[13]  K. Morokuma,et al.  Ab initio MO calculation of force constants and dipole derivatives for the formamide dimer. An estimation of hydrogen-bond force constants , 1983 .

[14]  I. Mayer,et al.  A BSSE‐free SCF algorithm for intermolecular interactions. II. Sample calculations on hydrogen‐bonded complexes , 1992 .

[15]  S. Suhai,et al.  Toward a BSSE‐free description of strongly interacting systems , 2002 .

[16]  G. Halász,et al.  BSSE-free second order intermolecular perturbation theory II. Sample calculations on hydrogen-bonded complexes , 1998 .

[17]  I. Mayer,et al.  A BSSE-free SCF algorithm for intermolecular interactions , 1991 .

[18]  G. Halász,et al.  Comparison of basis set superposition error corrected perturbation theories for calculating intermolecular interaction energies , 1999, J. Comput. Chem..

[19]  S. Suhai,et al.  BSSE-free description of intermolecular force constants in hydrogen fluoride and water dimers , 2003 .

[20]  I. Mayer,et al.  SCF theory of intermolecular interactions without basis set superposition error , 1987 .

[21]  K. Itoh,et al.  Vibrational spectra of crystalline formamide , 1972 .

[22]  Harry A. Stern,et al.  Strength of the N-HiiiO=C and C-HiiiO=C Bonds in Formamide and N-Methylacetamide Dimers , 2001 .

[23]  Péter R. Surján,et al.  Monomer geometry relaxation and the basis set superposition error , 1992 .

[24]  István Mayer,et al.  Second order Mo/ller–Plesset perturbation theory without basis set superposition error , 1998 .

[25]  S. Suhai,et al.  BSSE-Free Description of the Formamide Dimers , 2001 .

[26]  A. Sobolewski,et al.  Ab initio study of the potential energy functions relevant for hydrogen transfer in formamide, its dimer and its complex with water , 1995 .

[27]  W. J. Stevens,et al.  Abinitio study of the hydrogen bonding interactions of formamide with water and methanol , 1986 .

[28]  G. Halász,et al.  BSSE-free SCF theories: a comment , 2000 .

[29]  I. Mayer,et al.  BSSE-free second-order intermolecular perturbation theory , 1997 .

[30]  I. Mayer,et al.  Intermolecular SCF theory without BSSE: The equations and some applications for small systems , 1988 .

[31]  István Mayer,et al.  Towards a “Chemical” Hamiltonian , 1983 .

[32]  Jenn-Huei Lii,et al.  Directional hydrogen bonding in the MM3 force field: II , 1998, Journal of Computational Chemistry.

[33]  G. Halász,et al.  A BSSE-FREE SCF ALGORITHM FOR INTERMOLECULAR INTERACTIONS. III. GENERALIZATION FOR THREE-BODY SYSTEMS AND FOR USING BOND FUNCTIONS , 1996 .

[34]  István Mayer,et al.  An analytical investigation into the BSSE problem , 1991 .

[35]  E. Cabaleiro-Lago,et al.  Development of an intermolecular potential function for interactions in formamide clusters based on ab initio calculations , 1999 .

[36]  Sándor Suhai,et al.  On the effect of the BSSE on intermolecular potential energy surfaces. Comparison of a priori and a posteriori BSSE correction schemes , 2001, J. Comput. Chem..

[37]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[38]  S. Suhai Structure and bonding in the formamide crystal: A complete fourth‐order many‐body perturbation theoretical study , 1995 .

[39]  I. Mayer On the Hylleraas functional for a non-Hermitian unperturbed Hamiltonian , 1996 .

[40]  H. B. Jansen,et al.  Non-empirical molecular orbital calculations on the protonation of carbon monoxide , 1969 .

[41]  E. Cabaleiro-Lago,et al.  Ab Initio and density functional theory study of the interaction in formamide and thioformamide dimers and trimers , 2002 .

[42]  G. T. Fraser,et al.  The microwave spectrum of formamide–water and formamide–methanol complexes , 1988 .

[43]  Benny G. Johnson,et al.  On the intermolecular vibrational modes of the guanine⋯cytosine, adenine⋯thymine and formamide⋯formamide H-bonded dimers , 1995 .

[44]  Ludwik Adamowicz,et al.  Neutral and negatively-charged formamide, N-methylformamide and dimethylformamide clusters , 1998 .

[45]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .