Existence of Invariant Cones in General 3-Dim Homogeneous Piecewise Linear Differential Systems with Two Zones

Existence and number of invariant cones in general 3-dim homogeneous piecewise linear differential systems with two zones separated by a plane are investigated. Implicit parametric expressions of t...

[1]  Xiao-Song Yang,et al.  On the Number of Invariant Cones and Existence of Periodic Orbits in 3-dim Discontinuous Piecewise Linear Systems , 2016, Int. J. Bifurc. Chaos.

[2]  Marco Storace,et al.  A hysteresis‐based chaotic circuit: dynamics and applications , 1999 .

[3]  Songmei Huan,et al.  Existence and Stability of Invariant Cones in 3-Dim Homogeneous Piecewise Linear Systems with Two Zones , 2017, Int. J. Bifurc. Chaos.

[4]  E. Freire,et al.  Invariant manifolds of periodic orbits for piecewise linear three‐dimensional systems , 2004 .

[5]  Tassilo Küpper,et al.  Invariant cones for non-smooth dynamical systems , 2008, Math. Comput. Simul..

[6]  Jaume Llibre,et al.  On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line , 2014, 1409.4602.

[7]  Qingdu Li,et al.  Multiple-scrolls chaotic attractor and circuit implementation , 2003 .

[8]  E. Freire,et al.  PERIODIC ORBITS AND INVARIANT CONES IN THREE-DIMENSIONAL PIECEWISE LINEAR SYSTEMS , 2014 .

[9]  Xiao-Song Yang,et al.  Generalized Hopf bifurcation emerged from a corner in general planar piecewise smooth systems , 2012 .

[10]  Xiao-Song Yang,et al.  On the number of limit cycles in general planar piecewise linear systems , 2012 .

[11]  Enrique Ponce,et al.  Bifurcation Sets of Continuous Piecewise Linear Systems with Two Zones , 1998 .

[12]  Jaume Llibre,et al.  Limit cycles and invariant cylinders for a class of continuous and discontinuous vector field in dimention 2n , 2011, Appl. Math. Comput..

[13]  V. CARMONA,et al.  Limit Cycle bifurcation in 3D Continuous Piecewise Linear Systems with Two Zones: Application to Chua's Circuit , 2005, Int. J. Bifurc. Chaos.

[14]  Qingdu Li,et al.  Chaos generator via Wien-bridge oscillator , 2002 .

[15]  Joan Torregrosa,et al.  Limit cycles in planar piecewise linear differential systems with nonregular separation line , 2016 .

[16]  Xiao-Song Yang,et al.  Generalized Hopf bifurcation in a class of planar switched systems , 2011 .

[17]  H. A. Hosham,et al.  Reduction to invariant cones for non-smooth systems , 2011, Math. Comput. Simul..

[18]  Michael Peter Kennedy,et al.  Nonsmooth bifurcations in a piecewise linear model of the Colpitts Oscillator , 2000 .

[19]  H. A. Hosham,et al.  Invariant manifolds for nonsmooth systems , 2012 .

[20]  A. A. Andronov CHAPTER VIII – THE METHOD OF THE POINT TRANSFORMATIONS IN PIECE-WISE LINEAR SYSTEMS† , 1966 .

[21]  Stephen Coombes,et al.  Nonsmooth dynamics in spiking neuron models , 2012 .

[22]  Qingdu Li,et al.  Chaos in three-dimensional hybrid systems and design of chaos generators , 2012 .

[23]  E. Freire,et al.  Saddle–node bifurcation of invariant cones in 3D piecewise linear systems , 2012 .

[24]  Yuri A. Kuznetsov,et al.  One-Parameter bifurcations in Planar Filippov Systems , 2003, Int. J. Bifurc. Chaos.

[25]  Enrique Ponce,et al.  Bifurcation of Invariant cones in Piecewise Linear Homogeneous Systems , 2005, Int. J. Bifurc. Chaos.

[26]  Enrique Ponce,et al.  LIMIT CYCLE BIFURCATION FROM CENTER IN SYMMETRIC PIECEWISE-LINEAR SYSTEMS , 1999 .