Singular value correlation functions for products of Wishart random matrices

We consider the product of M quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalizes the classical Wishart-Laguerre Gaussian unitary ensemble with M = 1. In this paper, we first compute the joint probability distribution for the singular values of the product matrix when the matrix size N and the number M are fixed but arbitrary. This leads to a determinantal point process which can be realized in two different ways. First, it can be written as a one-matrix singular value model with a nonstandard Jacobian, or second, for M >= 2, as a two-matrix singular value model with a set of auxiliary singular values and a weight proportional to the Meijer G-function. For both formulations, we determine all singular value correlation functions in terms of the kernels of biorthogonal polynomials which we explicitly construct. They are given in terms of the hypergeometric and Meijer G-functions, generalizing the Laguerre polynomials for M = 1. Our investigation was motivated from applications in telecommunication of multi-layered scattering multiple-input and multiple-output channels. We present the ergodic mutual information for finite-N for such a channel model with M - 1 layers of scatterers as an example.

[1]  Leonid A. Bunimovich,et al.  Short- and long-term forecast for chaotic and random systems (50 years after Lorenz's paper) , 2014 .

[2]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[3]  Eugene Strahov,et al.  Hole Probabilities and Overcrowding Estimates for Products of Complex Gaussian Matrices , 2012, 1211.1576.

[4]  Thomas Guhr,et al.  Derivation of determinantal structures for random matrix ensembles in a new way , 2009, 0912.0654.

[5]  Harish-Chandra Differential Operators on a Semisimple Lie Algebra , 1957 .

[6]  Marco Bertola,et al.  Biorthogonal polynomials for two-matrix models with semiclassical potentials , 2006, J. Approx. Theory.

[7]  Simon R. Saunders,et al.  Antennas and Propagation for Wireless Communication Systems , 1999 .

[8]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[9]  Ralf R. Müller,et al.  On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels , 2002, IEEE Trans. Inf. Theory.

[10]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[11]  Lun Zhang,et al.  A note on the limiting mean distribution of singular values for products of two Wishart random matrices , 2013, 1305.0726.

[12]  Karol Zyczkowski,et al.  Product of Ginibre matrices: Fuss-Catalan and Raney distributions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Jerzy Jurkiewicz,et al.  Infinite products of large random matrices and matrix-valued diffusion , 2003 .

[14]  Charles M. Newman,et al.  The distribution of Lyapunov exponents: Exact results for random matrices , 1986 .

[15]  F. Benaych-Georges,et al.  On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions , 2008, 0808.3938.

[16]  Wolfgang Woess,et al.  Isotropic Markov semigroups on ultra-metric spaces , 2013, 1304.6271.

[17]  Z. Burda,et al.  Universal microscopic correlation functions for products of independent Ginibre matrices , 2012, 1208.0187.

[18]  Z. Burda,et al.  Spectrum of the product of independent random Gaussian matrices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[20]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[21]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[22]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[23]  Alexander Tikhomirov,et al.  On the Asymptotic Spectrum of Products of Independent Random Matrices. , 2010, 1012.2710.

[24]  Teodor Banica,et al.  Free Bessel Laws , 2007, Canadian Journal of Mathematics.

[25]  Peter J. Forrester,et al.  Lyapunov Exponents for Products of Complex Gaussian Random Matrices , 2012, 1206.2001.

[26]  George B. Arfken,et al.  More Special Functions , 2012 .

[27]  C. Itzykson The planar approximation , 1980 .

[28]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .

[29]  B. Lautrup,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Romuald A. Janik,et al.  Multiplying unitary random matrices—universality and spectral properties , 2003 .

[31]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[32]  Z. Burda,et al.  Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices: The Extended Version , 2011, 1103.3964.

[33]  Z. Burda,et al.  Eigenvalues and singular values of products of rectangular gaussian random matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  K. Splittorff,et al.  A new Chiral Two-Matrix Theory for Dirac Spectra with Imaginary Chemical Potential , 2006 .

[35]  Charles M. Newman,et al.  The triangle law for Lyapunov exponents of large random matrices , 1992 .

[36]  J. Szmigielski,et al.  Cauchy–Laguerre Two-Matrix Model and the Meijer-G Random Point Field , 2012, 1211.5369.

[37]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[38]  J. R. Ipsen Products of Independent Quaternion Ginibre Matrices and their Correlation Functions , 2013 .

[39]  Marco Bertola,et al.  Cauchy biorthogonal polynomials , 2009, J. Approx. Theory.

[40]  Angelo Vulpiani,et al.  Products of Random Matrices , 1993 .

[41]  James C. Osborn,et al.  Erratum to: “A new chiral two-matrix theory for Dirac spectra with imaginary chemical potential” [Nucl. Phys. B 766 (2007) 34–67] , 2008 .