Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics.

We theoretically study and experimentally demonstrate a pseudomorphic Ge/Ge0.92Sn0.08/Ge quantum-well microdisk resonator on Ge/Si (001) as a route toward a compact GeSn-based laser on silicon. The structure theoretically exhibits many electronic and optical advantages in laser design, and microdisk resonators using these structures can be precisely fabricated away from highly defective regions in the Ge buffer using a novel etch-stop process. Photoluminescence measurements on 2.7 μm diameter microdisks reveal sharp whispering-gallery-mode resonances (Q > 340) with strong luminescence.

[1]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[2]  James S. Harris,et al.  Low surface roughness and threading dislocation density Ge growth on Si (0 0 1) , 2008 .

[3]  Donguk Nam,et al.  Electroluminescence from Strained Ge membranes and Implications for an Efficient Si-Compatible Laser , 2012 .

[4]  Yasuhiko Ishikawa,et al.  Strain-induced band gap shrinkage in Ge grown on Si substrate , 2003 .

[5]  Wei Wang,et al.  Relaxed and Strained Patterned Germanium-Tin Structures: A Raman Scattering Study , 2013 .

[6]  Krishna C. Saraswat,et al.  Effect of isochronal hydrogen annealing on surface roughness and threading dislocation density of epitaxial Ge films grown on Si , 2010 .

[7]  S. Bass,et al.  Constituent quarks and g1 , 1999, hep-ph/9902280.

[8]  Yi-Chiau Huang,et al.  Highly selective dry etching of germanium over germanium-tin (Ge(1-x)Sn(x)): a novel route for Ge(1-x)Sn(x) nanostructure fabrication. , 2013, Nano letters.

[9]  M. Oehme,et al.  GeSn Heterojunction Diode: Detector and Emitter in One Device , 2013 .

[10]  Krishna C. Saraswat,et al.  Achieving direct band gap in germanium through integration of Sn alloying and external strain , 2013 .

[11]  T. Kamins,et al.  Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy , 2012 .

[12]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[13]  Xingao Gong,et al.  Origin of the Unusually Large Band-Gap Bowing and the Breakdown of the Band-Edge Distribution Rule in the SnxGe1-x Alloys , 2008 .

[14]  Richard A. Soref,et al.  Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures , 1993 .

[15]  A. Kortan,et al.  Epitaxially stabilized GexSn1−x diamond cubic alloys , 1991 .

[16]  Jesse Lu,et al.  Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators , 2010 .

[17]  B. Holländer,et al.  Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors , 2013 .

[18]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[19]  John C. Bean,et al.  Stability of semiconductor strained‐layer superlattices , 1986 .

[20]  C. O. Chui,et al.  Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality , 2004 .

[21]  Stefan Zollner,et al.  Optical critical points of thin-film Ge 1-y Sn y alloys: A comparative Ge 1-y Sn y /Ge 1-x Si x study , 2006 .

[22]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.

[23]  Kazumi Wada,et al.  High-quality Ge epilayers on Si with low threading-dislocation densities , 1999 .

[24]  S. Chuang,et al.  Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength. , 2009, Optics express.

[25]  R Loo,et al.  GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. , 2012, Optics express.

[26]  Byung-Gook Park,et al.  Fabrication and Analysis of Epitaxially Grown Ge$_{1-x}$Sn$_x$ Microdisk Resonator With 20-nm Free-Spectral Range , 2011, IEEE Photonics Technology Letters.

[27]  M. Oehme,et al.  Room-temperature electroluminescence from tensile strained double-heterojunction Germanium pin LEDs on Silicon substrates , 2013 .

[28]  Richard A. Soref,et al.  Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate , 2013 .

[29]  K. Saraswat,et al.  Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing , 2013 .

[30]  K. Saraswat,et al.  Theoretical Analysis of GeSn Alloys as a Gain Medium for a Si-Compatible Laser , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  S. Chuang,et al.  Theory of Optical Gain of ${\hbox {Ge--}}{\hbox {Si}}_{x}{\hbox {Ge}}_{y}{\hbox {Sn}}_{1-x-y}$ Quantum-Well Lasers , 2007, IEEE Journal of Quantum Electronics.

[32]  A. G. Rodríguez,et al.  Determination of the optical energy gap of Ge1−xSnx alloys with 0 , 2004 .

[33]  Harry A. Atwater,et al.  INTERBAND TRANSITIONS IN SNXGE1-X ALLOYS , 1997 .

[34]  Christophe Dupuis,et al.  High-Q wet-etched GaAs microdisks containing InAs quantum boxes , 1999 .

[35]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[36]  Zoran Ikonic,et al.  Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials , 2007 .

[37]  H. Atwater,et al.  Measurement of the direct energy gap of coherently strained SnxGe1–x/Ge(001) heterostructures , 2000 .

[38]  David Smith,et al.  Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission , 2012 .

[39]  W. Fan,et al.  Theoretical gain of strained GeSn0.02/Ge1-x-y ' SixSny ' quantum well laser , 2010 .

[40]  Umar Mohideen,et al.  Threshold characteristics of semiconductor microdisk lasers , 1993 .

[41]  John Tolle,et al.  Direct-gap photoluminescence with tunable emission wavelength in Ge1−ySny alloys on silicon , 2010 .

[42]  Isabelle Sagnes,et al.  Tensile-strained germanium microdisks , 2013 .

[43]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[44]  Richard A. Soref,et al.  Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser , 2010 .

[45]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[46]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[47]  Qiming Wang,et al.  High-responsivity GeSn short-wave infrared p-i-n photodetectors , 2013 .

[48]  R. Lieten,et al.  Tensile strained GeSn on Si by solid phase epitaxy for high mobility FET devices , 2013 .

[49]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[50]  Y. Shimura,et al.  Growth of highly strain-relaxed Ge1−xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method , 2008 .

[51]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[52]  V. D'costa,et al.  Perfectly tetragonal, tensile-strained Ge on Ge1−ySny buffered Si(100) , 2007 .

[53]  Wilfried Vandervorst,et al.  Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition , 2011 .

[54]  James S. Harris,et al.  Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy , 2011 .

[55]  James S. Harris,et al.  Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy , 2011 .

[56]  Jurgen Michel,et al.  Direct-gap optical gain of Ge on Si at room temperature. , 2009, Optics letters.

[57]  R. Soref,et al.  Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode. , 2010, Optics express.