The effect of dilute nitrogen on nonlinear optical properties of the InGaAsN/GaAs single quantum wells

[1]  S. Sakiroglu,et al.  Nonlinear optical rectification and the second and third harmonic generation in Pöschl–Teller quantum well under the intense laser field , 2012 .

[2]  Y. Al-Douri,et al.  Structural and electronic properties of GaNxAs1−x alloys , 2012 .

[3]  Liangliang Lu,et al.  The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods–Saxon potential , 2011 .

[4]  Yung-fu Chen,et al.  Role of the N-related localized states in the electron emission properties of a GaAsN quantum well , 2011 .

[5]  A. Rudra,et al.  Dilute-nitride GaInAsN/GaAs site-controlled pyramidal quantum dots , 2011 .

[6]  Ismail Sokmen,et al.  The effect of the intense laser field on the intersubband transitions in Ga1−xInxNyAs1−y/GaAs single quantum well , 2011 .

[7]  S. Fahy,et al.  Mobility in gated GaNxAs1-x heterostructures as a probe of nitrogen-related electronic states , 2011 .

[8]  E. O’Reilly,et al.  Theory of intermediate- and high-field mobility in dilute nitride alloys , 2011 .

[9]  M. Cantoni,et al.  Dilute nitride InGaAsN/GaAs V-groove quantum wires emitting at 1.3 μm wavelength at room temperature , 2011 .

[10]  A. Rudra,et al.  High-quality 1.3 μm-wavelength GaInAsN/GaAs quantum wells grown by metalorganic vapor phase epitaxy on vicinal substrates , 2011 .

[11]  I. Sokmen,et al.  Dependence of impurity binding energy on nitrogen and indium concentrations for shallow donors in a GaInNAs/GaAs quantum well under intense laser field , 2011 .

[12]  Jamie D. Phillips,et al.  Band structure of strain-balanced GaAsBi/GaAsN superlattices on GaAs , 2011 .

[13]  A. Hierro,et al.  Optimization of InGaAsN(Sb)/GaAs quantum dots for optical emission at 1.55 μm with low optical degradation , 2011 .

[14]  S. Sakiroglu,et al.  Hydrogenic impurities in quantum dots under intense high-frequency laser field , 2011 .

[15]  V. Mikoushkin Formation of GaAs1−xNx nanofilm on GaAs by low energy N2+ implantation , 2011 .

[16]  Y. Su,et al.  Growth, Fabrication, and Characterization of InGaAsN Double Heterojunction Solar Cells , 2011 .

[17]  E. Niculescu,et al.  Nonlinear optical absorption in inverse V-shaped quantum wells modulated by high-frequency laser field , 2010 .

[18]  M. A. Amato,et al.  Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well , 2009 .

[19]  M. Oduncuoglu,et al.  Critical layer thickness of GaIn(N)As(Sb) QWs on GaAs and InP substrates for (001) and (111) orientations , 2009 .

[20]  F. Julien,et al.  Infrared detectors based on InGaAsN∕GaAs intersubband transitions , 2009 .

[21]  Sotirios Baskoutas,et al.  Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots : Effects of impurities, electric field, size, and optical intensity , 2008 .

[22]  A. Erol,et al.  Dilute III-V Nitride Semiconductors and Material Systems , 2008 .

[23]  M. A. Amato,et al.  Intense laser field effects on the binding energy of impurities in semiconductors , 2007 .

[24]  J. Gupta,et al.  Intersubband transition in narrow GaInNAs∕GaAs quantum wells , 2006 .

[25]  I. Karabulut,et al.  Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential , 2006 .

[26]  E. Bakır,et al.  Analysis of the band alignment of highly strained indium-rich GaInNAs QWs on InP substrates , 2006 .

[27]  B. Gonul,et al.  Comparison of the band alignment of strained and strain-compensated GaInNAs QWs on GaAs and InP substrates , 2006, cond-mat/0604308.

[28]  E. O’Reilly,et al.  Unification of the band anticrossing and cluster-state models of dilute nitride semiconductor alloys. , 2004, Physical review letters.

[29]  Luiz E. Oliveira,et al.  Laser effects on donor states in low-dimensional semiconductor heterostructures , 2004 .

[30]  Richard J. Potter,et al.  Optical properties of GaNAs and GaInAsN quantum wells , 2004 .

[31]  Robin L. Williams,et al.  Band-gap energy of In x Ga 1 − x N y As 1 − y as a function of N content , 2002 .

[32]  C. Skierbiszewski Experimental studies of the conduction-band structure of GaInNAs alloys , 2002 .

[33]  P. Chang State-of-the-art program on compound semiconductors XXXVII (SOTAPOCS XXXVII) and narrow bandgap optoelectronic materials and devices : proceedings of the international symposia , 2002 .

[34]  I. Suemune,et al.  Role of nitrogen in the reduced temperature dependence of band-gap energy in GaNAs , 2000 .

[35]  Eugene E. Haller,et al.  Effect of nitrogen on the band structure of GaInNAs alloys , 1999 .

[36]  John D. Perkins,et al.  Nitrogen-Activated Transitions, Level Repulsion, and Band Gap Reduction in GaAs{sub 1{minus}x}N{sub x } with x {lt} 0.03 , 1999 .

[37]  A. Fonseca,et al.  Laser-dressed binding energy of a hydrogen impurity in the GaAs/AlxGa1 − xAs nanostructure in the presence of a static electric field☆ , 1998 .

[38]  M. Fedorov Atomic and Free Electrons in a Strong Light Field , 1998 .

[39]  Fonseca,et al.  Hydrogenic impurities in a quantum well wire in intense, high-frequency laser fields. , 1996, Physical review. B, Condensed matter.

[40]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[41]  Gavrila,et al.  Dichotomy of the hydrogen atom in superintense, high-frequency laser fields. , 1988, Physical review letters.

[42]  J. Kamiński,et al.  Free-free transitions in intense high-frequency laser fields , 1984 .

[43]  H. Kramers,et al.  Collected scientific papers , 1956 .