The problem of inherited 40Ar* in dating impact glass by the 40Ar/39Ar method: Evidence from the Tswaing impact crater (South Africa)

[1]  J. Wijbrans,et al.  Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing , 2006 .

[2]  A. Lepinette,et al.  Numerical Simulation of Heating of Target at Crater-Field-forming Impact Events , 2006 .

[3]  P. Barton,et al.  Chicxulub Revealed with New Seismic and Gravity Data , 2006 .

[4]  B. Hager,et al.  Giant meteoroid impacts can cause volcanism , 2005 .

[5]  D. Sengupta,et al.  Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry , 2005 .

[6]  C. Koeberl,et al.  Geochemical and petrographic characteristics of impactites and Cretaceous target rocks from the Yaxcopoil‐1 borehole, Chicxulub impact structure, Mexico: Implications for target composition , 2005 .

[7]  R. Muller,et al.  40Ar/39Ar dating of Apollo 12 impact spherules , 2005 .

[8]  P. Renne,et al.  Alder Creek sanidine (ACs-2): A Quaternary 40Ar/39Ar dating standard tied to the Cobb Mountain geomagnetic event , 2005 .

[9]  P. Renne,et al.  The 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii , 2005 .

[10]  R. Grieve Economic natural resource deposits at terrestrial impact structures , 2005, Geological Society, London, Special Publications.

[11]  A. Boyce,et al.  Mineral Deposits and Earth Evolution , 2005 .

[12]  M. Nowak,et al.  Argon and CO2 on the race track in silicate melts: A tool for the development of a CO2 speciation and diffusion model , 2004 .

[13]  K. Howard,et al.  Flood deposits penecontemporaneous with ∼0.8 Ma tektite fall in NE Thailand: impact-induced environmental effects?☆ , 2004 .

[14]  C. Koeberl,et al.  Rb-Sr and Sm-Nd isotopic compositions of the Rooiberg Group, South Africa: early Bushveld-related volcanism , 2004 .

[15]  S. Kelley,et al.  Laser argon dating of melt breccias from the Siljan impact structure, Sweden: Implications for a possible relationship to Late Devonian extinction events , 2004 .

[16]  M. Coffin,et al.  Impact Origin for the Greater Ontong Java Plateau? Geophysical and Geodynamic Evidence. , 2004 .

[17]  E. Baxter Quantification of the factors controlling the presence of excess 40 Ar or 4 He , 2003 .

[18]  Stephen J. Mackwell,et al.  37th Annual Lunar and Planetary Science Conference , 2003 .

[19]  S. Kelley Excess argon in K–Ar and Ar–Ar geochronology , 2002 .

[20]  K. Farley (U-Th)/He Dating: Techniques, Calibrations, and Applications , 2002 .

[21]  P. Layer Argon‐40/argon‐39 age of the El'gygytgyn impact event, Chukotka, Russia , 2000 .

[22]  Becker,et al.  Lunar impact history from (40)Ar/(39)Ar dating of glass spherules , 2000, Science.

[23]  P. Renne,et al.  A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite , 2000 .

[24]  J. Spray,et al.  The Strangways impact structure, Northern Territory, Australia: geological setting and laser probe 40Ar/39Ar geochronology , 1999 .

[25]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[26]  W. Reimold Exogenic and endogenic breccias: a discussion of major problematics , 1998 .

[27]  J. Spray,et al.  A late Triassic age for the Rochechouart impact structure, France , 1997 .

[28]  Warren D. Sharp,et al.  40Ar/39Ar Dating into the Historical Realm: Calibration Against Pliny the Younger , 1997 .

[29]  S. Reddy,et al.  A microstructural and argon laserprobe study of shear zone development at the western margin of the Nanga Parbat–Haramosh Massif, western Himalaya , 1997 .

[30]  D. Moser,et al.  Late Jurassic age for the Morokweng impact structure, southern Africa , 1997 .

[31]  C. Harris,et al.  Hydrological impact of the Pretoria Saltpan crater, South Africa , 1996 .

[32]  R. Sullivan,et al.  Mechanical and geological effects of impact cratering on Ida , 1996 .

[33]  G. B. Dalrymple,et al.  A glass spherule of questionable impact origin from the Apollo 15 landing site: Unique target mare basalt , 1996 .

[34]  R. Clayton,et al.  Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils , 1995 .

[35]  M. Norman,et al.  39Ar40Ar age and petrology of Chico: Large-scale impact melting on the L chondrite parent body , 1995 .

[36]  C. Koeberl,et al.  Saltpan impact crater, South Africa: Geochemistry of target rocks, breccias, and impact glasses, and osmium isotope systematics , 1994 .

[37]  U. Schärer,et al.  Dating Terrestrial Impact Events , 1994 .

[38]  David Morrison,et al.  Impacts on the Earth by asteroids and comets: assessing the hazard , 1994, Nature.

[39]  J. Vogel,et al.  The Pretoria Saltpan: a 200,000 year Southern African lacustrine sequence , 1993 .

[40]  C. Koeberl,et al.  Pretoria Saltpan crater: Impact origin confirmed , 1992 .

[41]  A. Montanari,et al.  Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites , 1992, Science.

[42]  T. Stephan,et al.  Isotope systematics and shock-wave metamorphism: III. K-Ar in experimentally and naturally shocked rocks; the Haughton impact structure, Canada , 1992 .

[43]  M. S. Matthews,et al.  Hazards Due to Comets and Asteroids , 1992 .

[44]  M. Pilkington,et al.  Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico , 1991 .

[45]  R. Armstrong,et al.  A chronostratigraphic framework for the north-central Kaapvaal craton, the Bushveld Complex and the Vredefort structure , 1990 .

[46]  R. Wiens On the siting of gases shock-emplaced from internal cavities in basalt , 1988 .

[47]  F. Hörz,et al.  Loss of radiogenic argon from shocked granitic clasts in suevite deposits from the Ries Crater , 1988 .

[48]  T. Harrison,et al.  Multiple trapped argon isotope components revealed by 40AR39AR isochron analysis , 1988 .

[49]  R. Wiens,et al.  Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA 79001 , 1988 .

[50]  F. Hörz,et al.  Shock‐implanted noble gases: An experimental study with implications for the origin of Martian gases in shergottite meteorites , 1986 .

[51]  S. Runcorn Book Review: Impact and Explosion Cratering. Proceedings of the Symposium on Planetary Cratering Mechanics. Pergamon Press, 1977, 1299 pp., US $150.00, £98.00, ISBN 0-08-022050-9 , 1984 .

[52]  Walter Alvarez,et al.  Evidence from crater ages for periodic impacts on the Earth , 1984, Nature.

[53]  E. Jäger,et al.  Lectures in isotope geology , 1979 .

[54]  M. H. Dodson Theory of Cooling Ages , 1979 .

[55]  J. C. Roddick The application of isochron diagrams in40Ar-39Ar dating: A discussion , 1978 .

[56]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[57]  E. Shoemaker Why study impact craters , 1977 .

[58]  D. J. Milton,et al.  Evidence for an Impact Origin of the Pretoria Salt Pan, South Africa , 1971 .

[59]  I. Mcdougall,et al.  A comparison of mineral and whole rock potassium-argon ages of tertiary volcanics from central Queensland, Australia , 1967 .

[60]  W. Compston,et al.  The statistical assessment of Rb‐Sr isochrons , 1966 .

[61]  Grenville Turner,et al.  Potassium‐argon dating by activation with fast neutrons , 1966 .

[62]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[63]  A. Nier,et al.  A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium , 1950 .