A Novel Sub-5-nm Node Dual-Workfunction Folded Cascode Nanosheet FETs for Low Power Mobile Applications

A novel sub-5-nm node folded cascode structure using dual workfunction (WF) scheme was proposed using fully-calibrated TCAD. Feasible process flows of the cascode device were adopted from those of nanosheet FETs (NSFETs) and complementary FETs. Key process flows were depositing two different separate spacers and etching one spacer selectively, depositing oxide layer in between source/drain epitaxial growths for electrical isolation, and fill-CMP-etch back sequence for dual-WF. The folded cascode device consists of two or three FETs in series, designated as 2-CAS or 3-CAS respectively, under the same active area. Conventional three-stacked NSFETs have larger transconductance (<inline-formula> <tex-math notation="LaTeX">$G_{m}$ </tex-math></inline-formula>) than 2-CAS and 3-CAS, but the cascode devices have much larger output resistance (<inline-formula> <tex-math notation="LaTeX">$R_{o}$ </tex-math></inline-formula>) by dual-WF scheme and thus achieve larger intrinsic gain (<inline-formula> <tex-math notation="LaTeX">$A_{V} = G_{m}R_{o}$ </tex-math></inline-formula>). Smaller <inline-formula> <tex-math notation="LaTeX">$G_{m}$ </tex-math></inline-formula> and larger gate capacitance for the cascode devices decrease the cutoff frequency. But smaller gate-to-drain capacitance by shrunk drain epi along with large <inline-formula> <tex-math notation="LaTeX">$R_{o}$ </tex-math></inline-formula> increases the maximum frequency (<inline-formula> <tex-math notation="LaTeX">$F_{max}$ </tex-math></inline-formula>). Especially, 2-CAS has larger <inline-formula> <tex-math notation="LaTeX">$A_{V}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$F_{max}$ </tex-math></inline-formula> than conventional NSFETs for all the NS widths of 20, 30, and 40 nm and at all the operation voltages of 0.6, 0.7, and 0.8 V, promising for low power mobile applications.

[1]  Jun-Sik Yoon,et al.  Systematic DC/AC Performance Benchmarking of Sub-7-nm Node FinFETs and Nanosheet FETs , 2018, IEEE Journal of the Electron Devices Society.

[2]  B. Parvais,et al.  Power-performance Trade-offs for Lateral NanoSheets on Ultra-Scaled Standard Cells , 2018, 2018 IEEE Symposium on VLSI Technology.

[3]  K. Sivasankaran,et al.  Impact of geometrical parameters and substrate on analog/RF performance of stacked nanosheet field effect transistor , 2019, Materials Science in Semiconductor Processing.

[4]  K. Phoa,et al.  Intel 22nm FinFET (22FFL) Process Technology for RF and mm Wave Applications and Circuit Design Optimization for FinFET Technology , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[5]  M. Armstrong,et al.  Implementation of High Power RF Devices with Hybrid Workfunction and OxideThickness in 22nm Low-Power FinFET Technology , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[6]  R. L. Havill,et al.  Single-stage Amplifiers , 1985 .

[7]  G. Bouche,et al.  The Complementary FET (CFET) for CMOS scaling beyond N3 , 2018, 2018 IEEE Symposium on VLSI Technology.

[8]  Sungchul Kim,et al.  High performance 14nm FinFET technology for low power mobile RF application , 2017, 2017 Symposium on VLSI Technology.

[9]  B. Haran,et al.  Parasitic Resistance Reduction Strategies for Advanced CMOS FinFETs Beyond 7nm , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[10]  J. Watts,et al.  14-nm FinFET Technology for Analog and RF Applications , 2018, IEEE Transactions on Electron Devices.

[11]  C. Auth,et al.  A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[12]  Diederik Verkest,et al.  Buried Power Rails and Back-side Power Grids: Arm® CPU Power Delivery Network Design Beyond 5nm , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[13]  Jung-Hee Lee,et al.  Enhancement of Device Performance in LDMOSFET by Using Dual-Work-Function-Gate Technique , 2010, IEEE Electron Device Letters.

[14]  Jun He,et al.  5nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021µm2 SRAM cells for Mobile SoC and High Performance Computing Applications , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[15]  Amir M. Sodagar Single-Stage Amplifiers , 2018, Analysis of Bipolar and CMOS Amplifiers.

[16]  D. Corliss,et al.  Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET , 2017, 2017 Symposium on VLSI Technology.