Single input optimal control for globally coupled neuron networks

We consider the problem of desynchronizing a network of synchronized, globally (all-to-all) coupled neurons using an input to a single neuron. This is done by applying the discrete time dynamic programming method to reduced phase models for neural populations. This technique numerically minimizes a certain cost function over the whole state space, and is applied to a Kuramoto model and a reduced phase model for Hodgkin-Huxley neurons with electrotonic coupling. We evaluate the effectiveness of control inputs obtained by averaging over results obtained for different coupling strengths. We also investigate the applicability of this method to Hodgkin-Huxley models driven by multiplicative stimuli.

[1]  J. D. Hunter,et al.  Amplitude and frequency dependence of spike timing: implications for dynamic regulation. , 2003, Journal of neurophysiology.

[2]  Y Yarom,et al.  Electrotonic Coupling Interacts with Intrinsic Properties to Generate Synchronized Activity in Cerebellar Networks of Inhibitory Interneurons , 1999, The Journal of Neuroscience.

[3]  Eric T. Shea-Brown,et al.  Optimal Inputs for Phase Models of Spiking Neurons , 2006 .

[4]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[5]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[6]  Petr Lánský,et al.  A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models , 2008, Biological Cybernetics.

[7]  H. Eichenbaum,et al.  Oscillatory Entrainment of Striatal Neurons in Freely Moving Rats , 2004, Neuron.

[8]  Peter L Carlen,et al.  Electrotonic coupling between stratum oriens interneurones in the intact in vitro mouse juvenile hippocampus , 2004, The Journal of physiology.

[9]  S. T. G. Roup,et al.  DEEP-BRAIN STIMULATION OF THE SUBTHALAMIC NUCLEUS OR THE PARS INTERNA OF THE GLOBUS PALLIDUS IN PARKINSON'S DISEASE , 2001 .

[10]  Leonidas D. Iasemidis,et al.  Control of Synchronization of Brain Dynamics leads to Control of Epileptic Seizures in Rodents , 2009, Int. J. Neural Syst..

[11]  Jeff Moehlis,et al.  Event-based feedback control of nonlinear oscillators using phase response curves , 2007, 2007 46th IEEE Conference on Decision and Control.

[12]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[13]  J. Blankenship,et al.  Electrotonic coupling among neuroendocrine cells in Aplysia. , 1979, Journal of neurophysiology.

[14]  Philipp Hövel,et al.  Time-delayed feedback in neurosystems , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  X.L. Chen,et al.  Deep Brain Stimulation , 2013, Interventional Neurology.

[16]  E. Marder,et al.  Multiple models to capture the variability in biological neurons and networks , 2011, Nature Neuroscience.

[17]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[18]  T. Aprille,et al.  A computer algorithm to determine the steady-state response of nonlinear oscillators , 1972 .

[19]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[20]  R. C. Compton,et al.  Quasi-optical power combining using mutually synchronized oscillator arrays , 1991 .

[21]  Wulfram Gerstner,et al.  What Matters in Neuronal Locking? , 1996, Neural Computation.

[22]  A. Winfree Patterns of phase compromise in biological cycles , 1974 .

[23]  P. Holmes,et al.  Globally Coupled Oscillator Networks , 2003 .

[24]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[25]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[26]  Satoshi Nakata,et al.  Arnold tongue of electrochemical nonlinear oscillators. , 2009, The journal of physical chemistry. A.

[27]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[28]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[29]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[30]  Andrey Shilnikov,et al.  Origin of bursting through homoclinic spike adding in a neuron model. , 2007, Physical review letters.

[31]  Emery N. Brown,et al.  The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis , 2002, Neural Computation.

[32]  D. Hansel,et al.  Phase Dynamics for Weakly Coupled Hodgkin-Huxley Neurons , 1993 .

[33]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[34]  P. Danzl,et al.  Spike timing control of oscillatory neuron models using impulsive and quasi-impulsive charge-balanced inputs , 2008, 2008 American Control Conference.

[35]  Yoji Kawamura,et al.  Collective-phase description of coupled oscillators with general network structure. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[37]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[38]  Wulfram Gerstner,et al.  Rescaling, thinning or complementing? On goodness-of-fit procedures for point process models and Generalized Linear Models , 2010, NIPS.

[39]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[40]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[41]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[42]  Aronson,et al.  Entrainment regions for periodically forced oscillators. , 1986, Physical review. A, General physics.

[43]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[44]  P. Tass Phase Resetting in Medicine and Biology , 1999 .

[45]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[46]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[47]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[48]  Philip Holmes,et al.  A Minimal Model of a Central Pattern Generator and Motoneurons for Insect Locomotion , 2004, SIAM J. Appl. Dyn. Syst..

[49]  E. Marder,et al.  Global Structure, Robustness, and Modulation of Neuronal Models , 2001, The Journal of Neuroscience.

[50]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[51]  Farzan Nadim,et al.  Modeling the leech heartbeat elemental oscillator I. Interactions of intrinsic and synaptic currents , 1995, Journal of Computational Neuroscience.

[52]  G B Ermentrout,et al.  Beyond a pacemaker's entrainment limit: phase walk-through. , 1984, The American journal of physiology.

[53]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[54]  Takahiro Harada,et al.  Optimal waveform for the entrainment of a weakly forced oscillator. , 2010, Physical review letters.

[55]  Ali Nabi,et al.  CHARGE-BALANCED SPIKE TIMING CONTROL FOR PHASE MODELS OF SPIKING NEURONS , 2010 .

[56]  J. Mink,et al.  Deep brain stimulation. , 2006, Annual review of neuroscience.

[57]  A Schnitzler,et al.  Review: Deep brain stimulation in Parkinson’s disease , 2009, Therapeutic advances in neurological disorders.

[58]  A. Winfree The geometry of biological time , 1991 .

[59]  Arecchi,et al.  Theory of phase locking of globally coupled laser arrays. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[60]  J. Guckenheimer,et al.  Isochrons and phaseless sets , 1975, Journal of mathematical biology.

[61]  G. Ermentrout,et al.  Phase transition and other phenomena in chains of coupled oscilators , 1990 .

[62]  P. Olver Nonlinear Systems , 2013 .

[63]  Ghanim Ullah,et al.  Tracking and control of neuronal Hodgkin-Huxley dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Matthew A. Wilson,et al.  Construction of Point Process Adaptive Filter Algorithms for Neural Systems Using Sequential Monte Carlo Methods , 2007, IEEE Transactions on Biomedical Engineering.

[65]  H. Pinsker Aplysia bursting neurons as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. , 1977, Journal of neurophysiology.

[66]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[67]  J. Bower,et al.  An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. , 1994, Journal of neurophysiology.

[68]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[69]  P. Krack,et al.  Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. , 2001, The New England journal of medicine.

[70]  Jiang Wang,et al.  A combined method to estimate parameters of neuron from a heavily noise-corrupted time series of active potential. , 2009, Chaos.

[71]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[72]  J. Rinzel,et al.  Rhythmogenic effects of weak electrotonic coupling in neuronal models. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Martin W. McCall,et al.  Numerical simulation of a large number of coupled lasers , 1993 .

[74]  B Ermentrout,et al.  Model for olfactory discrimination and learning in Limax procerebrum incorporating oscillatory dynamics and wave propagation. , 2001, Journal of neurophysiology.

[75]  S. Strogatz,et al.  Frequency locking in Josephson arrays: Connection with the Kuramoto model , 1998 .

[76]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[77]  Ali Nabi,et al.  Nonlinear hybrid control of phase models for coupled oscillators , 2010, Proceedings of the 2010 American Control Conference.

[78]  Ingo Fischer,et al.  Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication , 2000 .

[79]  J. Moehlis,et al.  On the Response of Neurons to Sinusoidal Current Stimuli: Phase Response Curves and Phase-Locking , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[80]  Jr-Shin Li,et al.  Optimal Asymptotic Entrainment of Phase-Reduced Oscillators , 2011, ArXiv.

[81]  Jr-Shin Li,et al.  Optimal design of minimum-power stimuli for phase models of neuron oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Philip Holmes,et al.  The Influence of Spike Rate and Stimulus Duration on Noradrenergic Neurons , 2004, Journal of Computational Neuroscience.

[83]  Jr-Shin Li Control of Inhomogeneous Ensembles , 2006 .

[84]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[85]  J. Jalife,et al.  Mechanisms of Sinoatrial Pacemaker Synchronization: A New Hypothesis , 1987, Circulation research.

[86]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[87]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[88]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[89]  J. Buck Synchronous Rhythmic Flashing of Fireflies. II. , 1938, The Quarterly Review of Biology.

[90]  J. Bower,et al.  Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. , 1993, Journal of neurophysiology.

[91]  M. Gutnick,et al.  Electrotonic coupling in the anterior pituitary of a teleost fish. , 2005, Endocrinology.

[92]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[93]  Ali Nabi,et al.  Charge-Balanced Optimal Inputs for Phase Models of Spiking Neurons , 2009 .

[94]  Jeff Moehlis,et al.  Canards for a reduction of the Hodgkin-Huxley equations , 2006, Journal of mathematical biology.

[95]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[96]  T. J. Walker,et al.  Acoustic Synchrony: Two Mechanisms in the Snowy Tree Cricket , 1969, Science.

[97]  P. Ashwin,et al.  The dynamics ofn weakly coupled identical oscillators , 1992 .

[98]  Wiesenfeld,et al.  Synchronization transitions in a disordered Josephson series array. , 1996, Physical review letters.

[99]  John L Hudson,et al.  Emerging Coherence in a Population of Chemical Oscillators , 2002, Science.

[100]  Wulfram Gerstner,et al.  How Good Are Neuron Models? , 2009, Science.