Optimization of key parameters for effective vanadium substitution into cubic SBA-16 in the presence of co-surfactant at low acidity: Application in the selective oxidation of ethylbenzene

[1]  Dae-Won Park,et al.  Optimization, synthesis and characterization of vanadium-substituted thick-walled three-dimensional SBA-16 , 2009 .

[2]  H. Kim,et al.  Catalytic combustion of benzene over metal oxides supported on SBA-15 , 2008 .

[3]  F. Gao,et al.  The states of vanadium species in V-SBA-15 synthesized under different pH values , 2008 .

[4]  T. Radhika,et al.  Vanadia supported on ceria: Characterization and activity in liquid-phase oxidation of ethylbenzene , 2007 .

[5]  D. Zhao,et al.  Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1: Synthesis and Characterization , 2007 .

[6]  L. Pfefferle,et al.  Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde , 2006 .

[7]  F. Kleitz,et al.  Phase domain of the cubic Im3m mesoporous silica in the EO106PO70EO106-butanol-H2O system. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  K. Ariga,et al.  Preparation and catalytic performances of ultralarge-pore TiSBA-15 mesoporous molecular sieves with very high Ti content. , 2006, The journal of physical chemistry. B.

[9]  Tae-Wan Kim,et al.  MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. , 2005, Journal of the American Chemical Society.

[10]  Heyong He,et al.  Synthesis of MCM-48 single crystals with cube morphology , 2005 .

[11]  M. Jaroniec,et al.  Three-dimensional cubic mesoporous molecular sieves of FDU-1 containing niobium: dependence of niobium source on structural properties. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[12]  P. Selvam,et al.  Catalytic activity of highly ordered mesoporous VMCM-48 , 2004 .

[13]  H. Sheu,et al.  Rapid Crystallization of High Quality Cubic Sillica SBA-16 Nanoporous Material , 2004 .

[14]  Agustín Martínez,et al.  Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde , 2003 .

[15]  A. Neimark,et al.  Experimental Confirmation of Different Mechanisms of Evaporation from Ink-Bottle Type Pores: Equilibrium, Pore Blocking, and Cavitation , 2002 .

[16]  P. Voort,et al.  Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity , 2002 .

[17]  G. L. Haller,et al.  Preparation of Highly Ordered Vanadium-Substituted MCM-41: Stability and Acidic Properties† , 2002 .

[18]  Wen-Hau Zhang,et al.  Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15 , 2002 .

[19]  A. Neimark,et al.  Density Functional Theory of Adsorption in Spherical Cavities and Pore Size Characterization of Templated Nanoporous Silicas with Cubic and Three-Dimensional Hexagonal Structures , 2002 .

[20]  M. Jaroniec,et al.  Synthesis of large-pore silica with cage-like structure using sodium silicate and triblock copolymer template , 2002 .

[21]  B. Weckhuysen,et al.  Vanadium-Incorporated MCM-48 Materials: Optimization of the Synthesis Procedure and an in Situ Spectroscopic Study of the Vanadium Species , 2001 .

[22]  Qinghong Zhang,et al.  Synthesis of V-MCM-41 by template-ion exchange method and its catalytic properties in propane oxidative dehydrogenation , 2001 .

[23]  V. Fornés,et al.  V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase , 2001 .

[24]  Y. Onodera,et al.  Characterization of tetrahedral vanadium-containing MCM-41 molecular sieves synthesized at room temperature , 1999 .

[25]  Yihong Lu,et al.  Characteristics of V-MCM-41 and Its Catalytic Properties in Oxidation of Benzene , 1999 .

[26]  V. Ramaswamy,et al.  Characterization of MeAPO-11s synthesized conventionally and in the presence of fluoride ions and their catalytic properties in the oxidation of ethylbenzene , 1999 .

[27]  G. Stucky,et al.  Silica-Based, Cubic Mesostructures: Synthesis, Characterization and Relevance for Catalysis , 1998 .

[28]  H. Roesky,et al.  Titanosilicate: neue Entwicklungen in der Synthese und bei der Anwendung als Oxidationskatalysatoren , 1997 .

[29]  Heyong He,et al.  Synthesis and Spectroscopic Characterization of Vanadosilicate Mesoporous MCM-41 Molecular Sieves , 1996 .

[30]  T. Pinnavaia,et al.  Transition metal substituted derivatives of cubic MCM-48 mesoporous molecular sieves , 1996 .

[31]  B. Wichterlová,et al.  Spectroscopic studies of vanadium-substituted zeolitic silicates of MFI topology , 1996 .

[32]  A. Tuel,et al.  Characterization of vanadium-containing mesoporous silicas , 1995 .

[33]  I. Moudrakovski,et al.  Synthesis of mesoporous vanadium silicate molecular sieves , 1994 .

[34]  H. Eckert,et al.  Bonding states of surface vanadium(V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy , 1993 .

[35]  V. Dondur,et al.  Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated Y-type zeolites , 1991 .

[36]  G. Öhlmann,et al.  Investigations of catalytically active surface compounds: XVII. Influence of size and structure of vanadium oxide clusters on selectivity in the oxidation of n-butene , 1985 .