Explicit Lower Bounds on Strong Quantum Simulation

We consider the problem of classical strong (amplitude-wise) simulation of <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-qubit quantum circuits, and identify a subclass of simulators we call monotone. This subclass encompasses almost all prominent simulation techniques. We prove an <italic>unconditional</italic> (i.e. without relying on any complexity-theoretic assumptions) and <italic>explicit</italic> <inline-formula> <tex-math notation="LaTeX">$(n-2)(2^{n-3}-1)$ </tex-math></inline-formula> lower bound on the running time of simulators within this subclass. Assuming the Strong Exponential Time Hypothesis (SETH), we further remark that a universal simulator computing <italic>any</italic> amplitude to precision <inline-formula> <tex-math notation="LaTeX">$2^{-n}/2$ </tex-math></inline-formula> must take at least <inline-formula> <tex-math notation="LaTeX">$2^{n - o(n)}$ </tex-math></inline-formula> time. We then compare strong simulators to existing SAT solvers, and identify the time-complexity below which a strong simulator would improve on state-of-the-art general SAT solving. Finally, we investigate Clifford+<inline-formula> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> quantum circuits with <inline-formula> <tex-math notation="LaTeX">$t~T$ </tex-math></inline-formula>-gates. Using the sparsification lemma, we identify a time complexity lower bound of <inline-formula> <tex-math notation="LaTeX">$2^{2.2451\times 10^{-8}t}$ </tex-math></inline-formula> below which a strong simulator would improve on state-of-the-art 3-SAT solving. This also yields a conditional exponential lower bound on the growth of the stabilizer rank of magic states.

[1]  Mark Howard,et al.  Simulation of quantum circuits by low-rank stabilizer decompositions , 2018, Quantum.

[2]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[3]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[4]  Uwe Schöning A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems , 1999, FOCS.

[5]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[6]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[7]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[8]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[9]  Stephen D. Bartlett,et al.  From estimation of quantum probabilities to simulation of quantum circuits , 2017, Quantum.

[10]  Rolando L. La Placa,et al.  How many qubits are needed for quantum computational supremacy? , 2018, Quantum.

[11]  Mark Jerrum,et al.  Some Exact Complexity Results for Straight-Line Computations over Semirings , 1982, JACM.

[12]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[13]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[14]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[15]  Russell Impagliazzo,et al.  A duality between clause width and clause density for SAT , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[16]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[17]  Terry Rudolph,et al.  A simple encoding of a quantum circuit amplitude as a matrix permanent , 2009, ArXiv.

[18]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[19]  Tomoyuki Morimae,et al.  Fine-grained quantum computational supremacy , 2019, Quantum Inf. Comput..

[20]  A. Montanaro,et al.  Quantum circuits and low-degree polynomials over F2 , 2016, 1607.08473.

[21]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[22]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[23]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[24]  Petteri Kaski,et al.  Tensor network complexity of multilinear maps , 2017, ITCS.

[25]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[26]  David G. Glynn,et al.  The permanent of a square matrix , 2010, Eur. J. Comb..

[27]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[28]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[31]  V. Strassen Gaussian elimination is not optimal , 1969 .

[32]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[33]  Timon Hertli,et al.  3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[34]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[35]  Adam Bouland,et al.  Quantum Supremacy and the Complexity of Random Circuit Sampling , 2018, ITCS.

[36]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[37]  Xiaodi Wu,et al.  Non-Identity Check Remains QMA-Complete for Short Circuits , 2009, 0906.5416.

[38]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[39]  J. Smolin,et al.  Trading Classical and Quantum Computational Resources , 2015, 1506.01396.

[40]  John A. Gunnels,et al.  Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral , 2017 .

[41]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[42]  PaturiRamamohan,et al.  An improved exponential-time algorithm for k-SAT , 2005 .