Combining structural and symbolic methods for the verification of concurrent systems

The contributions during the last few years on the structural theory of Petri nets can now be applied to formal verification. The structural theory provides methods to find efficient encoding schemes for symbolic representations of the reachable markings. It also provides approximations of the state space that allow one to alleviate many bottlenecks in the calculation of the reachability set by breadth or depth first search algorithms. The paper reviews some of the results on the structural theory and explains how they can be incorporated in a model checking verification framework for concurrent systems.

[1]  Jordi Cortadella,et al.  Efficient encoding schemes for symbolic analysis of Petri nets , 1998, Proceedings Design, Automation and Test in Europe.

[2]  Doron A. Peled,et al.  Combining partial order reductions with on-the-fly model-checking , 1994, Formal Methods Syst. Des..

[3]  Javier Esparza,et al.  Model Checking LTL Using Constraint Programming , 1997, ICATPN.

[4]  André Arnold,et al.  Finite transition systems - semantics of communicating systems , 1994, Prentice Hall international series in computer science.

[5]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[6]  Michel Hack,et al.  ANALYSIS OF PRODUCTION SCHEMATA BY PETRI NETS , 1972 .

[7]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[8]  C. Petri Kommunikation mit Automaten , 1962 .

[9]  Javier Esparza,et al.  A polynomial algorithm to compute the concurrency relation of free-choice Signal Transition Graphs , 1995 .

[10]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[11]  Antti Valmari,et al.  Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.

[12]  Kenneth McAloon,et al.  Optimization and computational logic , 1996, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Gianpiero Cabodi,et al.  Symbolic FSM traversals based on the transition relation , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[15]  Jordi Cortadella,et al.  Petri Net Analysis Using Boolean Manipulation , 1994, Application and Theory of Petri Nets.

[16]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[17]  Jörg Desel,et al.  Proving Nonreachability by Modulo-Invariants , 1996, Theor. Comput. Sci..