Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks.

Zeolitic imidazolate frameworks (ZIFs) have attracted great interest in recent years due to their high chemical and thermal stability with promising applications in gas storage and separations. We investigate the structures of three different crystalline ZIFs - ZIF-4, ZIF-8, ZIF-zni - and their amorphous counterparts using high field (13)C and (15)N CP MAS NMR. The high field (20 T) allows for the observation of all crystallographically independent carbon and nitrogen atoms in the crystalline ZIFs. Combining our experimental results with density functional theory calculations enabled the assignment of all chemical shifts. The crystalline spectra reveal the potential of high field NMR to distinguish between two ZIF polymorphs, ZIF-4 and ZIF-zni, with identical [Zn(C3H3N2)2] chemical compositions. (13)C and (15)N CP MAS NMR data obtained for the amorphous ZIFs clearly showed signal broadening upon amorphization, confirming the retention of chemical composition and the structural similarity of amorphous ZIF-4 and ZIF-zni. In the case of amorphous ZIF-8, we present evidence for the partial de-coordination of the 2-methyl imidazole linker.

[1]  D. Farrusseng,et al.  Superstructure of a substituted zeolitic imidazolate metal-organic framework determined by combining proton solid-state NMR spectroscopy and DFT calculations. , 2015, Angewandte Chemie.

[2]  A. Stepanov,et al.  Rotational and translational motion of benzene in ZIF-8 studied by 2H NMR: Estimation of microscopic self-diffusivity and its comparison with macroscopic measurements , 2014 .

[3]  D. Dawson,et al.  Recent developments in solid-state NMR spectroscopy of crystalline microporous materials. , 2014, Physical chemistry chemical physics : PCCP.

[4]  Raimondas Galvelis,et al.  Impact of functionalized linkers on the energy landscape of ZIFs , 2013 .

[5]  B. Smit,et al.  Mapping of Functional Groups in Metal-Organic Frameworks , 2013, Science.

[6]  F. Guenneau,et al.  Flexibility of ZIF-8 materials studied using 129Xe NMR. , 2013, Chemical communications.

[7]  D. Dawson,et al.  Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids. , 2013, Accounts of chemical research.

[8]  Yining Huang,et al.  Solid-state NMR: a powerful tool for characterization of metal-organic frameworks. , 2013, Solid state nuclear magnetic resonance.

[9]  John M. Griffin,et al.  First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view. , 2012, Chemical reviews.

[10]  Jinxiang Dong,et al.  Characterization of Zn-containing metal-organic frameworks by solid-state 67Zn NMR spectroscopy and computational modeling. , 2012, Chemistry.

[11]  G. B. Suffritti,et al.  NMR studies of carbon dioxide and methane self-diffusion in ZIF-8 at elevated gas pressures , 2012, Adsorption.

[12]  J. Long,et al.  CO2 dynamics in a metal-organic framework with open metal sites. , 2012, Journal of the American Chemical Society.

[13]  C. Téllez,et al.  CAF@ZIF-8: one-step encapsulation of caffeine in MOF. , 2012, ACS applied materials & interfaces.

[14]  C. Dybowski,et al.  NMR and X-ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks , 2012 .

[15]  A. Cheetham,et al.  Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. , 2011, Journal of the American Chemical Society.

[16]  A. Cheetham,et al.  Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). , 2011, Chemical communications.

[17]  A. Cheetham,et al.  Thermal amorphization of zeolitic imidazolate frameworks. , 2011, Angewandte Chemie.

[18]  V. Maisonneuve,et al.  ZnAlF5·[TAZ]: an Al fluorinated MOF of MIL-53(Al) topology with cationic {Zn(1,2,4 triazole)}2+ linkers , 2011 .

[19]  A. Cheetham,et al.  Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. , 2010, Angewandte Chemie.

[20]  J. Soler,et al.  Flexibility in a metal-organic framework material controlled by weak dispersion forces: the bistability of MIL-53(Al). , 2010, Angewandte Chemie.

[21]  A. Cheetham,et al.  Mechanical properties of dense zeolitic imidazolate frameworks (ZIFs): a high-pressure X-ray diffraction, nanoindentation and computational study of the zinc framework Zn(Im)2, and its lithium-boron analogue, LiB(Im)4. , 2010, Chemistry.

[22]  A. Baiker,et al.  Effect of Dehydration on the Local Structure of Framework Aluminum Atoms in Mixed Linker MIL-53(Al) Materials Studied by Solid-State NMR Spectroscopy , 2010 .

[23]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[24]  A. Soper,et al.  Structure and properties of an amorphous metal-organic framework. , 2010, Physical review letters.

[25]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Tao Wu,et al.  New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands , 2008 .

[27]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[28]  D. Zhao,et al.  Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies. , 2007, Chemistry.

[29]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[30]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[31]  F. Mauri,et al.  Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids. , 2005, The journal of physical chemistry. A.

[32]  J. Elguero,et al.  Pyrazoles as molecular probes to study the properties of co-crystals by solid state NMR spectroscopy , 2004 .

[33]  K. Zilm,et al.  Chemical shift referencing in MAS solid state NMR. , 2003, Journal of magnetic resonance.

[34]  H. Bitter,et al.  Solid-state NMR spectroscopic methods in chemistry. , 2002, Angewandte Chemie.

[35]  F. Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001, cond-mat/0101257.

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  I. Šmit,et al.  Mechanochemistry of zeolites: Part 1. Amorphization of zeolites A and X and synthetic mordenite by ball milling , 1993 .

[39]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[40]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[41]  E. Prince,et al.  Refinement of the structure of solid nitromethane , 1980 .

[42]  A. Kvick,et al.  Precision neutron diffraction structure determination of protein and nucleic acid components. III. The crystal and molecular structure of the amino acid α‐glycine , 1972 .

[43]  A. Cheetham,et al.  Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks , 2012 .

[44]  D. F. Kennedy,et al.  PLUXter: rapid discovery of metal-organic framework structures using PCA and HCA of high throughput synchrotron powder diffraction data. , 2011, Combinatorial chemistry & high throughput screening.

[45]  M. Burghammer,et al.  A microdiffraction set-up for nanoporous metal-organic-framework-type solids. , 2007, Nature Materials.

[46]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.